Skip to main content

Measuring HIV Neutralization in a Luciferase Reporter Gene Assay

  • Protocol
HIV Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 485))

Abstract

Neutralizing antibody (NAb) assays for human immunodeficiency virus (HIV) are used to study the immune response in infected individuals, to examine monoclonal antibodies and viral diversity, and to judge the potential value of candidate vaccine immunogens in preclinical and clinical trials. An important aspect of these efforts is an ability to achieve and document equivalent assay performance across multiple laboratories. Recent advances in assay technology have led to major improvements in how HIV NAbs are measured. Stable cell lines containing HIV Tat-regulated reporter genes are now available that permit rapid, sensitive and reproducible measurements of virus neutralization after a single round of infection in a high throughput format.Moreover, these assays may be used with molecularly cloned Env-pseudotyped viruses for greater reagent stability and traceability.A luciferase (Luc) reporter gene assay performed in TZM-bl (JC53bl-13) cells was recently optimized and many of its performance parameters have been validated. This assay has become the main endpoint neutralization assay used by the NIH-sponsored HIV Vaccine Trials Network and by a growing number of laboratories worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wyatt, R., Sodroski, J. (1998) The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280, 1884–1888.

    Article  CAS  PubMed  Google Scholar 

  2. Lasky, L. A., Nakamura, G., Smith, D. H., et al. (1987) Delineation of a region of the human immunodeficiency virus gp120 glycoprotein critical for interaction with the CD4 receptor. Cell 50, 975–985.

    Article  CAS  PubMed  Google Scholar 

  3. Berger, E. A. (1997) HIV entry and tropism: the chemokine receptor connection. AIDS 11(suppl. A), S3–S16.

    PubMed  Google Scholar 

  4. Berger, E. A., Doms, R. W., Fenyö, E.-M., et al. (1998) A new classification for HIV-1. Nature 391, 240.

    Article  CAS  PubMed  Google Scholar 

  5. Weissenhorn, W., Dessen, A., Harrison, S. C., et al. (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426–430.

    Article  CAS  PubMed  Google Scholar 

  6. Chan, D. C., Fass, D., Berger, J. M., et al. (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263–273.

    Article  CAS  PubMed  Google Scholar 

  7. Chan, D. C., Kim, P. S. (1998) HIV entry and its inhibition. Cell 93, 681–684.

    Article  CAS  PubMed  Google Scholar 

  8. Salzwedel, K., Smith, E. D., Dey, B., et al. (2000) Sequential CD4-coreceptor interactions in human immunodeficiency virus type 1 Env function: soluble CD4 activates Env for coreceptor-dependent fusion and reveals blocking activities of antibodies against cryptic conserved epitopes on gp120. J. Virol. 74, 326–333.

    Article  CAS  PubMed  Google Scholar 

  9. McDougal, J. S., Kennedy, M. S., Orloff, S. L., et al. (1996) Mechanism of human immunodeficiency virus type 1 (HIV-1) neutralization: irreversible inactivation of infectivity by anti-HIV-1 antibody. J. Virol. 70, 5236–5245.

    CAS  PubMed  Google Scholar 

  10. Sullivan, N., Sun, Y., Sattentau, Q., et al. (1998) CD4-induced conformational changes in the human immunodeficiency virus type 1 gp120 glycoprotein: consequences for virus entry and neutralization. J. Virol. 72, 4694–4703.

    CAS  PubMed  Google Scholar 

  11. Wei, X., Decker, J. M., Wang, S., et al. (2003) Antibody neutralization and escape. Nature 422, 307–312.

    Article  CAS  PubMed  Google Scholar 

  12. Platt, E. J., Wehrly, K., Kuhmann, S. E., et al. (1998) Effects of CCR5 and CD4 cell surface concentrations on infection by macrophage tropic isolates of human immunodeficiency virus type 1. J. Virol. 72, 2855–2864.

    CAS  PubMed  Google Scholar 

  13. Wei, X., Decker, J. M., Liu, H., et al. (2002) Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother. 46, 1896–1905.

    Article  CAS  PubMed  Google Scholar 

  14. Leitner, T., Korber, B., Daniels, M., et al. (2005) HIV-1 subtype and circulating recombinant form (CRF) reference sequences, 2005. in (T. Leitner, B. Foley, B. Hahn, P. Marx, F. McCutchan, J. W. Mellors, S. Wolinski, and B. Korber eds.), HIV Sequence Compendium 2005, pp. 41–48. Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, N. Mex. (http://hiv.lanl.gov).

    Google Scholar 

  15. Kwong, P. D., Doyle, M. L., Casper, D. J., et al. (2002) HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 420, 678–682.

    Article  CAS  PubMed  Google Scholar 

  16. Richman, D. D., Wrin, T., Little, S. J. et al. (2003) Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc. Natl. Acad. Sci. (USA) 100, 4144–4149.

    Article  CAS  Google Scholar 

  17. Haynes, B. F, Montefiori, D. C. (2006) Aiming to induce broadly reactive neutralizing antibody responses with HIV-1 vaccine candidates. Expert Rev. Vaccines 5, 347–363.

    Article  CAS  PubMed  Google Scholar 

  18. Mascola, J. R., D’Souza, P., Gilbert, P., et al. (2005) Recommendations for the design and use of standard virus panels to assess the neutralizing antibody response elicited by candidate human immunodeficiency virus type 1 vaccines. J. Virol. 79, 10103–10107.

    Article  CAS  PubMed  Google Scholar 

  19. Li, M., Gao, F., Mascola, J. R., et al. (2005) Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J. Virol. 79, 10108–10125.

    Article  CAS  PubMed  Google Scholar 

  20. Li, M., Salazar-Gonzalez, J. F., Derdeyn, C. A., et al. (2006) Genetic and neutralization properties subtype C human immunodeficiency virus type 1 molecular env clones from acute and early heterosexually acquired infections in southern Africa.. J. Virol., in press.

    Google Scholar 

  21. Brown, B. K., Darden, J. M., Tovanabutra, S., et al. (2005) Biologic and genetic characterization of a panel of 60 human immunodeficiency virus type 1 (HIV-1) isolates, representing clades A, B, C, D, CRF01_AE, and CRF02_AG, for the development and assessment of candidate vaccines. J. Virol. 79, 6089–6101.

    Article  CAS  PubMed  Google Scholar 

  22. Esparza, J. and the Coordinating Committee of the Global HIV/AIDS Vaccine Enterprise. (2005) The Global HIV/AIDS Vaccine Enterprise: Scientific strategic plan. PLoS Medicine 2(2), e25.

    Google Scholar 

  23. Johnson, V. A., Byington, R. E. (1990) Infectivity assay (virus yield assay), in (Aldovani, A., and Walker, B. D., eds.), Techniques in HIV Research, pp71–76. Stockton Press, New York, N.Y.

    Google Scholar 

  24. Montefiori, D. C., Cornell, R. J., Zhou, J. Y., et al. (1994) Complement control proteins, CD46, CD55 and CD59, as common surface constituents of human and simian immunodeficiency viruses and possible targets for vaccine protection. Virology 205, 82–92.

    Article  CAS  PubMed  Google Scholar 

  25. Louder, M. K., Sambor, A., Chertova, E., et al. (2005) HIV-1 envelope pseudotyped viral vectors and infectious molecular clones expressing the same envelope glycoprotein have a similar neutralization phenotype, but culture in peripheral blood mononuclear cells is associated with decreased neutralization sensitivity. Virology 339, 226–238.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Marcella Sarzotti-Kelsoe for guidance in optimizing and validating the assay, and Kelli Greene for her critical review of the document. He also thanks Drs. George Shaw and John Kappes for sharing their reagents. This work was supported by NIH grants AI30034 and AI46705.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Montefiori, D.C. (2009). Measuring HIV Neutralization in a Luciferase Reporter Gene Assay. In: Prasad, V.R., Kalpana, G.V. (eds) HIV Protocols. Methods In Molecular Biology™, vol 485. Humana Press. https://doi.org/10.1007/978-1-59745-170-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-170-3_26

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-859-1

  • Online ISBN: 978-1-59745-170-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics