Skip to main content

Manipulating Soil Metal Availability Using EDTA and Low-Molecular-Weight Organic Acids

  • Protocol
Phytoremediation

Part of the book series: Methods in Biotechnology ((MIBT,volume 23))

Abstract

Soils can be contaminated with heavy metals from various human activities and a num-ber of ex situ and in situ techniques have been developed to remove heavy metals from contaminated soils. Phytoremediation is a developing technology that aims to extract or inactivate metals, metalloids, and radionuclides in contaminated soils, and chemical enhancements have been used to enhance soil heavy-metal availability to plants. This chapter focuses on synthetic chelates and low-molecular-weight organic acids, in particu-lar induced phytoextraction of heavy metals, the successful cases, the mechanisms of enhancement, and the disadvantages of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGrath, S. P., Zhao, F.J., and Lombi, E. (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv. Agron. 75, 1–56.

    Article  CAS  Google Scholar 

  2. Salt, D. E., Smith, R. D., and Raskin, I. (1998) Phytoremediation. Ann. Rev. Plant Phys. Plant Mol. Biol. 49, 643–668.

    Article  CAS  Google Scholar 

  3. Blaylock, J. M., Salt, D. E., Dushenkov, S., et al. (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31, 860–865.

    Article  Google Scholar 

  4. Huang, J. W., Chen, J., Berti, W. R., and Cunningham, S. D. (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelating in lead phytoeatraction. Environ. Sci. Technol. 31, 800–805.

    Article  CAS  Google Scholar 

  5. Ebbs, S. D., Lasat, M. M., Brady, D. J., Cornish, J., Gordon, R., and Kochian, L. V. (1997) Phytoextraction of cadmium and zinc from a contaminated soil. J. Environ. Qual. 26, 1424–1430.

    Article  CAS  Google Scholar 

  6. Wu, L. H., Luo, Y. M., Christie, P., and Wong, M. H. (2003) Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere 50, 819–822.

    Article  CAS  Google Scholar 

  7. Epstein, A. L., Gussman, C. D., Blaylock, M. J., et al. (1999) EDTA and Pb-EDTA accumulation in Brassica juncea grown in Pb-amended soil. Plant Soil 208, 87–94.

    Article  CAS  Google Scholar 

  8. Bricker, T. J., Pichtel, J., Brown, H. J., and Simmons, M. J. (2001) Phytoextraction of Pb and Cd from a superfund soil: effects of amendments and croppings. J. Environ. Sci. Health A 36, 1597–1610.

    Article  CAS  Google Scholar 

  9. Jiang, X. J., Luo, Y. M., Zhao, Q. G., Baker, A. J. M., Christie, P., and Wong, M. H. (2003) Soil Cd availability to Indian mustard and environmental risk following EDTA addition to Cd-contaminated soil. Chemosphere 50, 813–818.

    Article  CAS  Google Scholar 

  10. Shahandeh, H. and Hossner, L. R. (2000) Plant screening for chromium phyto-remediation. Int. J. Phytorem. 2, 31–51.

    Article  CAS  Google Scholar 

  11. Wenzel, W. W., Unterbrunner, R., Sommer, P., and Sacco, P. (2003). Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant Soil 249, 83–96.

    Article  CAS  Google Scholar 

  12. Cooper, E. M., Sims, J. T., Cunningham, S. D., Huang, J. W., and Berti, W. R. (1999) Chelate-assisted phytoextraction of lead from contaminated soils. J. Environ. Qual. 28, 1709–1719.

    Article  CAS  Google Scholar 

  13. Chen, H. and Cutright, T. (2001) EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere 45, 21–28.

    Article  CAS  Google Scholar 

  14. Ebbs, S. D., Norvell, W. A., and Kochian, L. V. (1998) The effect of acidification and chelating agents on the solubilization of uranium from contaminated soil. J. Environ. Qual. 27, 1486–1494.

    Article  CAS  Google Scholar 

  15. Huang, J. W., Blaylock, M. J., Kapulnik, Y., and Ensley, B. D. (1998) Phytoremediation of uranium contaminated soils: Role of organic acids in triggering uranium hyper-accumulation in plants. Environ. Sci. Technol. 32, 2004–2008.

    Article  CAS  Google Scholar 

  16. Nigam, R., Srivatava, S., Prakash, S., and Srivastava, M. M. (2001) Cadmium mobili-sation and plant availability: the impact of organic acids commonly exuded from roots. Plant Soil 230, 107–113.

    Article  CAS  Google Scholar 

  17. Nowack, B. (2002) Environmental chemistry of aminopolycarboxylate chelating agents. Environ. Sci. Technol. 36, 4009–4016.

    Article  CAS  Google Scholar 

  18. Gleyzes, C., Tellier, S., and Astruc, M. (2002) Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends Anal. Chem. 21, 451–467.

    Article  CAS  Google Scholar 

  19. Elliott, H. A. and Shastri, N. L. (1999) Extractive decontamination of metal-polluted soils using oxalate. Water, Air Soil Pollut. 110, 335–346.

    Article  CAS  Google Scholar 

  20. Sun, B., Zhao, F. J., Lombi, E., and McGrath, S. P. (2001) Phytoextraction of cad-mium with Thlaspi caerulescens. Environ. Pollut. 113, 111–120.

    Article  CAS  Google Scholar 

  21. Barona, A., Aranguiz, I., and Elias, A. (2001) Metal associations in soils before and after EDTA extractive decontamination: implications for the effectiveness of further cleanup procedures. Environ. Pollut. 113, 79–85.

    Article  CAS  Google Scholar 

  22. Römkens, P., Bouwman, L., Japenga, J., and Draaisma, C. (2002) Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environ. Pollut. 116, 109–121.

    Article  Google Scholar 

  23. Lombi, E., Zhao, F. J., Dunham, S. J., and McGrath, S. P. (2001) Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J. Environ. Qual. 30, 1919–1926.

    Article  CAS  Google Scholar 

  24. Wu, L. H., Luo, Y. M., Song, J., Christie, P., and Wong, M. H. (2003) Changes in soil solution heavy metal concentrations over time following EDTA addition to a Chinese paddy soil. Bull. Environ. Contam. Toxicol. 71, 706–713.

    Article  CAS  Google Scholar 

  25. Robinson, B. H., Brooks, R. R., Gregg, P. E. H., and Kirkman, J. H. (1999) The nickel phytoextraction potential of some ultramafic soils as determined by sequen-tial extraction. Geoderma 87, 293–304.

    Article  CAS  Google Scholar 

  26. Gupta, S. K., Herren, T., Wenger, K., Krebs, R., and Hari, T. (2000) In situ gentle remediation measures for heavy metal-polluted soils. In: Phytoremediation of Contaminated Soil and Water (Terry, N. and Bañuelos, G., eds.), Lewis Publishers, Boca Raton, FL, pp. 303–321.

    Google Scholar 

  27. Walker, D. J., Clemente, R., Roig, A., and Bernal, M. P. (2003) The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environ. Pollut. 122, 303–312.

    Article  CAS  Google Scholar 

  28. Degryse, F., Broos, K., Smolders, E., and Merckx, R. (2003). Soil solution concen-tration of Cd and Zn can be predicted with a CaCl2 soil extract. Eur. J. Soil Sci. 54, 149–157.

    Article  CAS  Google Scholar 

  29. Blaylock, M. J. and Huang, J. W. (2000) Phytoextraction of Metals. In: Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment (Raskin, I. and Ensley, B. D., eds.), John Wiley and Son, Inc., New York, pp. 53–70.

    Google Scholar 

  30. Kim, C., Lee, Y., and Ong, S. K. (2003) Factors affecting EDTA extraction of lead from lead-contaminated soils. Chemosphere 51, 845–853.

    Article  CAS  Google Scholar 

  31. Vassil, A. D., Kapulnik, Y., Raskin, I., and Salt, D. E. (1998) The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiol. 117, 447–453.

    Article  CAS  Google Scholar 

  32. Jarvis, M. D. and Leung, D. W. M. (2001) Chelated lead transport in Chamaecytisus proliferus (L.f.) link ssp proliferus var. palmensis (H. Christ): an ultrastructural study. Plant Sci. 161, 433–441.

    Article  CAS  Google Scholar 

  33. Jarvis, M. D. and Leung, D. W. M. (2002) Chelated lead transport in Pinus radiata: an ultrastructural study. Environ. Exp. Bot. 48, 21–32.

    Article  CAS  Google Scholar 

  34. Salt, D. E., Prince, R. C., Pickering, I. J., and Raskin, I. (1995) Mechanisms of cad-mium mobility and accumulation in Indian mustard. Plant Physiol. 109, 427–433.

    Google Scholar 

  35. Kayser, A., Wenger, K., Keller, A., et al. (2000) Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: The use of NTA and sulfur amendments. Environ. Sci. Technol. 34, 1778–1783.

    Article  CAS  Google Scholar 

  36. Kos, B. and Lestan, D. (2003a) Induced phytoextraction/soil washing of lead using biodegradahle chelate and permeahle barriers. Environ. Sci. Technol. 37, 624–629.

    Article  CAS  Google Scholar 

  37. Kos, B. and Lestan, D. (2003b) Influence of a biodegradable ([S,S]-EDDS) and nondegradable (EDTA) chelate and hydrogel modified soil water sorption capacity on Pb phytoextraction and leaching. Plant Soil 253, 403–411.

    Article  CAS  Google Scholar 

  38. Grčman, H., Vodnik, D., Velikonja-Bolta, Š., and Lestan, D. (2003) Ethylene-diaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J. Environ. Qual. 32, 500–506.

    Article  Google Scholar 

  39. Bucheli-Witschel, M. and Egli, T. (2001) Environmental fate and microbial degre-dation of amnopolycarboxylic acids. FEMS Microbiol. Revs 25, 69–106.

    Article  CAS  Google Scholar 

  40. Robinson, B. H., Brooks, R. R., and Clothier, B. E. (1999) Soil amendments affect-ing nickel and cobalt uptake by Berkheya coddü: Potential use for phytomining and phytoremediation. Annal. Bot. 84, 689–694.

    Article  CAS  Google Scholar 

  41. Wu, L. H., Luo, Y. M., Xing, X. R., and Christie, P. (2004) EDTA-enhanced phyto-remediation of heavy metal contaminated soil and associated environmental risk. Agric. Eco. and Environ. 102, 307–318.

    Article  CAS  Google Scholar 

  42. Schmidt, U. (2003) Enhancing phytoremediation: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J. Environ. Qual. 32, 1939–1954.

    Article  CAS  Google Scholar 

  43. Grčman, H., Velikonja-Bolta, Š., Vodnik, D., Kos, B., and Leštan, D. (2001). EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 235, 105–114.

    Article  Google Scholar 

  44. Schloter, M., Dilly, O., and Munch, J. C. (2003) Indicators for evaluating soil quality. Agric. Eco. and Environ. 98, 255–262.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Wu, L., Luo, Y., Song, J. (2007). Manipulating Soil Metal Availability Using EDTA and Low-Molecular-Weight Organic Acids. In: Willey, N. (eds) Phytoremediation. Methods in Biotechnology, vol 23. Humana Press. https://doi.org/10.1007/978-1-59745-098-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-098-0_22

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-541-5

  • Online ISBN: 978-1-59745-098-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics