Skip to main content

Regulators of GPCR Activity

The Arrestins

  • Chapter

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

A single photon of light, triggering the physicochemical isomerization of an 11-cis-retinal to its all-trans form, initiates the process of vision. The retinal moiety serves as a tethered ligand for the photoreceptor rhodopsin, a G protein-coupled receptor (GPCR); within milliseconds, the conformational change in rhodopsin that occurs as a result of the retinal isomerization catalyzes guanosine 5′-triphosphate (GTP) for guanosine 5′-diphosphate (GDP) exchange on the heterotrimeric G protein transducin, transducin-dependent activation of a cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE), and the closure of cGMP-gated ion channels. The resulting hyperpolarization of the rod outer segment membrane inhibits release of the neurotransmitter glutamate from the photoreceptor terminal, and the light-induced stimulus is transmitted through the neural network of the retina to the central nervous system (CNS) for processing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Filipek S, Stenkamp RE, Teller DC, Palczewski K. G protein-coupled receptor rhodopsin: a prospectus. Ann Rev Physiol 2003;65:851–879.

    Article  CAS  Google Scholar 

  2. Arshavsky VY, Lamb TD, Pugh EN Jr. G proteins and phototransduction. Ann Rev Physiol 2002;64: 153–187.

    Article  CAS  Google Scholar 

  3. Freedman NJ, Lefkowitz R J. Desensitization of G protein-coupled receptors. Recent Prog Horm Res 1996; 51:319–351

    PubMed  CAS  Google Scholar 

  4. Ferguson SS. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharm Rev 2001;53:1–24.

    PubMed  CAS  Google Scholar 

  5. Smith DP, Shieh BH, Zuker CS. Isolation and structure of an arrestin gene from Drosophila. Proc Natl Acad Sci USA 1990;87:1003–1007.

    Article  PubMed  CAS  Google Scholar 

  6. Hyde DR, Mecklenburg KL, Pollock JA, Vihtelic TS, Benzer S. Twenty Drosophila visual system clones: one is a homolog of human arrestin. Proc Natl Acad Sci USA 1990;87:1008–1012.

    Article  PubMed  CAS  Google Scholar 

  7. Yamada T, Takeuchi Y, Komori N, et al. A 49-kilodalton phosphoprotein in the Drosophila photoreceptor is an arrestin homolog. Science 1990;248:483–486.

    Article  PubMed  CAS  Google Scholar 

  8. Mayeenuddin LH, Mitchell J. Squid visual arrestin; cDNA cloning and calcium-dependent phosphorylation by rhodopsin kinase (SQRK). J Neurochem 2003;85:592–600.

    Article  PubMed  CAS  Google Scholar 

  9. Nakagawa M, Orii H, Yoshida N, et al. Ascidian arrestin (Ci-arr), the origin of the visual and nonvisual arrestins of vertebrates. Eur J Biochem 2002;269:5112–5118.

    Article  PubMed  CAS  Google Scholar 

  10. Shinohara T, Dietzschold B, Craft CM, et al. Primary and secondary structure of bovine retinal S antigen (48-kDa protein). Proc Nat Acad Sci USA 1987;84: 6975–6979.

    Article  PubMed  CAS  Google Scholar 

  11. Yamaki K, Takahashi Y, Sakuragi S, Matsubara K. Molecular cloning of the S-antigen cDNA from bovine retina. Biochem Biophys Res Commun 1987;142:904–910.

    Article  PubMed  CAS  Google Scholar 

  12. Murakami A, Yajima T, Sakuma H, McClaren MJ, Inana G. X-arrestin: a new retinal arrestin mapping to the X chromosome. FEBS Lett 1993;334:203–209.

    Article  PubMed  CAS  Google Scholar 

  13. Craft CM, Whitmore DH, Weichmann AF. Cone arrestin identified by targeting expression of a functional family. J Biol Chem 1994;269:4613–4619.

    PubMed  CAS  Google Scholar 

  14. Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ. β-arrestin: a protein that regulates β-adrenergic receptor function. Science 1990;248:1547–1550.

    Article  PubMed  CAS  Google Scholar 

  15. Attramandal H, Arriza JL, Aoki C, et al. β-arrestin 2, a novel member of the arrestin/β-arrestin gene family. J Biol Chem 1992;267:17,882–17,890.

    Google Scholar 

  16. Goodman OB Jr, Krupnick JG, Santini F, et al. Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 1996;383:447–450.

    Article  PubMed  CAS  Google Scholar 

  17. Goodman OB Jr, Krupnick JG, Gurevich VV, Benovic JL, Keen JH. Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain. J Biol Chem 1997;272:15,017–15,022.

    Article  PubMed  CAS  Google Scholar 

  18. Laporte SA, Oakley RH, Zhang J, et al. The beta2-adrenergic receptor/beta-arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci USA 1999;96:3712–3717.

    Article  PubMed  CAS  Google Scholar 

  19. Laporte SA, Oakley RH, Holt JA, Barak LS, Caron MG. The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits. J Biol Chem 2000;275: 23,120–23,126.

    Article  PubMed  CAS  Google Scholar 

  20. Laporte SA, Miller WE, Kim KM, Caron MG. Beta-Arrestin/AP-2 interaction in G protein-coupled receptor internalization: Identification of a beta-arrestin binding site in beta 2-adaptin. J Biol Chem 2002;277: 9247–9254.

    Article  PubMed  CAS  Google Scholar 

  21. Graznin J, Wilden U, Choe HW, Labahn J, Krafft B, Buldt G. X-ray crystal structure of arrestin from bovine rod outer segments. Nature 1998;391:918–921.

    Article  Google Scholar 

  22. Hirsch JA, Schubert C, Gurevich VV, Sigler PB. The 2.8 A crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 1999;97:257–269.

    Article  PubMed  CAS  Google Scholar 

  23. Han M, Gurevich VV, Vishnivetsky SA, Sigler PB, Schubert C. Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane translocation. Structure 2001;9:869–880.

    Article  PubMed  CAS  Google Scholar 

  24. Gurevich VV, Dion SB, Onorato JJ, et al. Arrestin interactions with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, β2-adrenergic, and m2 muscarinic cholinergic receptors. J Biol Chem 1995;270:720–731.

    Article  PubMed  CAS  Google Scholar 

  25. Vishnivetskiy SA, Hosey MM, Benovic JL, Gurevich VV. Mapping the arrestin-receptor interface: structural elements responsible for receptor specificity of arrestin proteins. J Biol Chem 2004;279:1262–1268.

    Article  PubMed  CAS  Google Scholar 

  26. Shilton BH, McDowell JH, Smith WC, Hargrave PA. The solution structure and activation of visual arrestin studied by small angle X-ray scattering. Eur J Biochem 2002;269:3801–3809.

    Article  PubMed  CAS  Google Scholar 

  27. Kovoor A, Celver J, Abdryashitov RI, Chavkin C, Gurevich VV. Targeted construction of phosphorylation-independent beta-arrestin mutants with constitutive activity in cells. J Biol Chem 1999;274: 6831–6834.

    Article  PubMed  CAS  Google Scholar 

  28. Celver J, Vishnivetskiy SA, Chavkin C, Gurevich VV. Conservation of the phosphate-sensitive elements in the arrestin family of proteins. J Biol Chem 2002;277:9043–9048.

    Article  PubMed  CAS  Google Scholar 

  29. Kirchhausen T Adapters for clathrin-mediated traffic. Ann Rev Cell Dev Biol. 1999;15:705–732.

    Article  CAS  Google Scholar 

  30. Kim YM, Benovic JL. Differential roles of arrestin-2 interaction with clathrin and adaptor protein 2 in G protein-coupled receptor trafficking. J Biol Chem 2002;277:30,760–30,768.

    Article  PubMed  CAS  Google Scholar 

  31. Gaidarov I, Krupnick JG, Falck JR, Benovic JL, Keen JH. Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding. EMBO J 1999;18:871–881.

    Article  PubMed  CAS  Google Scholar 

  32. McDonald PH, Cote NL, Lin F-T, Premont RT, Pitcher JA, Lefkowitz RJ. Identification of NSF as a beta-arrestin1-binding protein. Implications for beta2-adrenergic receptor regulation. J Biol Chem 1999;274: 10,677–10,680.

    Article  PubMed  CAS  Google Scholar 

  33. Claing A, Chen W, Miller WE, et al. Beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis. J Biol Chem 2001;276:42,509–42,513.

    Article  PubMed  CAS  Google Scholar 

  34. Benovic JL, Pike LJ, Cerione RA, et al. Phosphorylation of the mammalian beta-adrenergic receptor by cyclic AMP-dependent protein kinase. Regulation of the rate of receptor phosphorylation and dephosphorylation by agonist occupancy and effects on coupling of the receptor to the stimulatory guanine nucleotide regulatory protein. J Biol Chem 1985;260:7094–7101.

    PubMed  CAS  Google Scholar 

  35. Bouvier M, Hausdorff WP, De Blasi A, et al. Removal of phosphorylation sites from the beta 2-adrenergic receptor delays onset of agonist-promoted desensitization. Nature 1988;333:370–373.

    Article  PubMed  CAS  Google Scholar 

  36. Lefkowitz RJ. G protein-coupled receptor kinases. Cell 1993; 74: 409–412.

    Article  PubMed  CAS  Google Scholar 

  37. Daaka Y, Luttrell LM, Lefkowitz RJ. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 1997;390:88–91.

    Article  PubMed  CAS  Google Scholar 

  38. Zamah AM, Delahunty M, Luttrell LM, Lefkowitz RJ. Protein kinase A-mediated phosphorylation of the beta2-adrenergic receptor regulates its coupling to Gs and Gi. Demonstration in a reconstituted system. J Biol Chem 2002;277:31,249–31,256.

    Article  PubMed  CAS  Google Scholar 

  39. Lawler OA, Miggin SM, Kinsella BT. Protein kinase A-mediated phosphorylation of serine 357 of the mouse prostacyclin receptor regulates its coupling to Gs-, to Gi-and to Gq-coupled effector signaling. J Biol Chem 2001;276:33,596–33,607.

    Article  PubMed  CAS  Google Scholar 

  40. Lefkowitz RJ, Pierce KL, Luttrell LM. Dancing with different partners: Protein kinase A phosphorylation of seven membrane-spanning receptors regulates their G protein-coupling specificity. Mol Pharmacol 2002;62: 971–974.

    Article  PubMed  CAS  Google Scholar 

  41. Benovic JL, Kuhn H, Weyand I, Codina J, Caron MG, Lefkowitz RJ. Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase. Potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc Natl Acad Sci USA 1987;84:8879–8882.

    Article  PubMed  CAS  Google Scholar 

  42. Lohse MJ, Andexinger S, Pitcher J, et al. Receptor specific desensitization with purified proteins. Kinase dependence and receptor specificity of β-arrestin and arrestin in the β2-adrenergic receptor and rhodopsin systems. J Biol Chem 1993;267:8558–8564.

    Google Scholar 

  43. Weiss ER, Raman D, Shirakawa S, et al. The cloning of GRK7, a candidate cone opsin kinase, from cone-and rod-dominant mammalian retinas. Mol Vis 1998;4:27.

    PubMed  CAS  Google Scholar 

  44. Stoffel RH, Pitcher JA, Lefkowitz RJ. Targeting G protein-coupled receptor kinases to their membrane substrates. J Memb Biol 1997;157:1–8.

    Article  CAS  Google Scholar 

  45. Conner, DA, Mathier MA, Mortensen RM, et al. Beta-Arrestin 1 knockout mice appear normal but demonstrate altered cardiac responses to beta-adrenergic stimulation. Circ Res 1997;81:1021–1026.

    PubMed  CAS  Google Scholar 

  46. Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin F-T. Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science. 1999;286:2495–2498.

    Article  PubMed  CAS  Google Scholar 

  47. Bohn LM, Gainetdinov RR, Lin F-T, Lefkowitz RJ, Caron MG. Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 2002;408:720–723.

    Google Scholar 

  48. Zhang J, Ferguson SS, Barak LS, Menard L, Caron MG. Dynamin and beta-arrestin reveal distinct mechanisms for G protein-coupled receptor internalization. J Biol Chem 1996;271:18,302–18,305.

    Article  PubMed  CAS  Google Scholar 

  49. Cao TT, Mays RW, von Zastrow M. Regulated endocytosis of G-protein-coupled receptors by a biochemically and functionally distinct subpopulation of clathrin-coated pits. J Biol Chem 1998;273:24,592–24,602.

    Article  PubMed  CAS  Google Scholar 

  50. Barak LS, Oakley RH, Laporte SA, Caron MG. Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc Natl Acad Sci USA 2001;98: 93–98.

    Article  PubMed  CAS  Google Scholar 

  51. Paing MM, Stutts AB, Kohout TA, Lefkowitz RJ, Trejo J. beta-Arrestins regulate protease-activated receptor-1 desensitization but not internalization or down-regulation. J Biol Chem 2002;277:1292–1300.

    Article  PubMed  CAS  Google Scholar 

  52. Vines CM, Revankar CM, Maestas DC, et al. N-formyl peptide receptors internalize but do not recycle in the absence of arrestins. J Biol Chem 2003;278:41,581–41,584.

    Article  PubMed  CAS  Google Scholar 

  53. Brasselet S, Guillen S, Vincent JP, Mazella J. Beta-arrestin is involved in the desensitization but not in the internalization of the somatostatin receptor 2A expressed in CHO cells. FEBS Lett 2002;10:124–128.

    Article  Google Scholar 

  54. Miller WE, Houtz DA, Nelson CD, Kolattukudy PE, Lefkowitz RJ. G-protein-coupled receptor (GPCR) kinase phosphorylation and beta-arrestin recruitment regulate the constitutive signaling activity of the human cytomegalovirus US28 GPCR. J Biol Chem 2003;278:21,663–21,671.

    Article  PubMed  CAS  Google Scholar 

  55. Fraile-Ramos A, Kohout TA, Waldhoer M, Marsh M. Endocytosis of the viral chemokine receptor US28 does not require beta-arrestins but is dependent on the clathrin-mediatted pathway. Traffic 2003;4:243–253.

    Article  PubMed  CAS  Google Scholar 

  56. Vogler O, Nolte B, Voss M, Schmidt M, Jakobs KH, van Koppen CJ. Regulation of muscarinic acetylcholine receptor sequestration and function by β-arrestin. J Biol Chem 1999;274:12,333–12,338.

    Article  PubMed  CAS  Google Scholar 

  57. Rapacciuolo A, Suvarna S, Barki-Harrington L, et al. Phosphorylation sites of the β-1 adrenergic receptor determine the internalization pathway. J Biol Chem 2003;278:35,403–35,411.

    Article  PubMed  CAS  Google Scholar 

  58. Barak LS, Ferguson SS, Zhang J, Caron MG. A beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J Biol Chem 1997;272:27,497–27,500.

    Article  PubMed  CAS  Google Scholar 

  59. Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG. Molecular determinants underlying the formation of stable intracellular G protein-coupled receptor-beta-arrestin complexes after receptor endocytosis. J Biol Chem 2001; 276:19,452–19,460.

    Article  PubMed  CAS  Google Scholar 

  60. Zhang J, Barak LS, Anborgh PH, Laporte SA, Caron MG, Ferguson SS. Cellular trafficking of G protein-coupled receptor/beta-arrestin endocytic complexes. J Biol Chem 1999;274:10,999–11,006.

    Article  PubMed  CAS  Google Scholar 

  61. Oakley RH, Laporte SA, Holt JA, Caron MG, Barak LS. Differential affinities of visual arrestin, beta-arrestin1, and beta-arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem 2000; 275:17,201–17,210.

    Article  PubMed  CAS  Google Scholar 

  62. Kohout TA, Lin F-T, Perry SJ, Conner DA, Lefkowitz RJ. Beta-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc Natl Acad Sci USA 2001;98:1601–1606.

    Article  PubMed  CAS  Google Scholar 

  63. Lin F-T, Krueger KM, Kendall HE, et al. Clathrin-mediated endocytosis of the beta-adrenergic receptor is regulated by phosphorylation/dephosphorylation of beta-arrestin1. J Biol Chem 1997;272:31,051–31,057.

    Article  PubMed  CAS  Google Scholar 

  64. Lin F-T, Chen W, Shenoy S, Cong M, Exum ST, Lefkowitz RJ. Phosphorylation of beta-arrestin2 regulates it function in internalization of beta(2)-adrenergic receptors. Biochemistry 2002;41:10,692–10,699.

    Article  PubMed  CAS  Google Scholar 

  65. Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ. Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and β-arrestin. Science 2001;294:1307–1313.

    Article  PubMed  CAS  Google Scholar 

  66. Martin NP, Lefkowitz RJ, Shenoy SK. Regulation of V2 vasopressin receptor degradation by agonist-promoted ubiquitination. J Biol Chem 2003; 278:45,954–45,959.

    Article  PubMed  CAS  Google Scholar 

  67. Shenoy SK, Lefkowitz RJ. Trafficking pattern of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination. J Biol Chem 2003;278:14,498–14,506.

    Article  PubMed  CAS  Google Scholar 

  68. Sibley DR, Strasser RH, Benovic JL, Daniel K, Lefkowitz RJ. Phosphorylation/dephosphorylation of the beta-adrenergic receptor regulates its functional coupling to adenylate cyclase and subcellular distribution. Proc Natl Acad Sci USA 1986;83:9408–9412.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang J, Barak LS, Winkler KE, Caron MG, Ferguson SS. A central role for β-arrestins and clathrin-coated vesicle-mediated endocytosis in β2-adrenergic receptor resensitization. J Biol Chem 1997; 272:27,005–27,014.

    Article  PubMed  CAS  Google Scholar 

  70. Pitcher JA, Payne ES, Csortos C, DePaoli-Roach AA, Lefkowitz RJ. The G-protein-coupled receptor phosphatase: A protein phosphatase type 2A with a distinct subcellular distribution and substrate specificity. Proc Natl Acad Sci USA 1995;92:8343–8347.

    Article  PubMed  CAS  Google Scholar 

  71. Krueger KM, Daaka Y, Pitcher JA, Lefkowitz RJ. The role of sequestration in G protein-coupled receptor resensitization. Regulation of beta2-adrenergic receptor dephosphorylation by vesicular acidification. J Biol Chem 1997;272:5–8.

    Article  PubMed  CAS  Google Scholar 

  72. Pan L, Gurevich EV, Gurevich VV. The nature of the arrestin x receptor complex determines the ultimate fate of the internalized receptor. J Biol Chem 2003;278:11,623–11,632.

    Article  PubMed  CAS  Google Scholar 

  73. Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG. Association of beta-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. J Biol Chem 1999; 274:32,248–32,257.

    Article  PubMed  CAS  Google Scholar 

  74. Gage RM, Kim KA, Cao TT, von Zastrow M. A transplantable sorting signal that is sufficient to mediate rapid recycling of G protein-coupled receptors. J Biol Chem 2001;276:44,712–44,720.

    Article  PubMed  CAS  Google Scholar 

  75. Cao TT, Deacon HW, Reczek D, Bretscher A, von Zastrow M. A kinase-regulated PDZ-domain interaction controls endocytic sorting of the beta 2-adrenergic receptor. Nature 1999;401:286–290.

    Article  PubMed  CAS  Google Scholar 

  76. Whistler JL, Enquist J, Marley A, et al. Modulation of postendocytic sorting of G protein-coupled receptors. Science 2002;297:529–531.

    Article  Google Scholar 

  77. Hall RA, Lefkowitz RJ. Regulation of G protein-coupled receptor signaling by scaffold proteins. Circ Res 2002;91:672–668.

    Article  PubMed  CAS  Google Scholar 

  78. Gurevich VV, Pals-Rylaarsdam R, Benovic JL, Hosey MM, Onorato JJ. Agonist-receptor-arrestin, an alternative ternary complex with high agonist affinity. J Biol Chem 1997;272:28,849–28,852.

    Article  PubMed  CAS  Google Scholar 

  79. Key TA, Bennett TA, Foutz TD, Gurevich VV, Sklar LA, Prossnitz ER. Regulation of formyl peptide receptor agonist affinity by reconstitution with arrestins and heterotrimeric G proteins. J Biol Chem 2001;276: 49,204–49,212.

    Article  PubMed  CAS  Google Scholar 

  80. Martini L, Hastrup H, Holst B, Fraile-Ramos A, Marsh M, Schwartz TW. NK1 receptor fused to beta-arrestin displays a single-component, high-affinity molecular phenotype. Mol Pharmacol 2002;62:30–37.

    Article  PubMed  CAS  Google Scholar 

  81. Holloway AC, Qian H, Pipolo L, et al. Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1a angiotensin receptors. Mol Pharmacol 2002;61:768–777.

    Article  PubMed  CAS  Google Scholar 

  82. Gaborik Z, Jagadeesh G, Zhang M, Spat A, Catt KJ, Hunyady L. The role of a conserved region of the second intracellular loop in AT1 angiotensin receptor activation and signaling. Endocrinology. 2003;144: 2220–2228.

    Article  PubMed  CAS  Google Scholar 

  83. Miller WE, Lefkowitz RJ. Expanding roles for beta-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr Opin Cell Biol 2001;13:139–145.

    Article  PubMed  CAS  Google Scholar 

  84. Perry SJ, Lefkowitz RJ. Arresting developments in heptahelical receptor signaling and regulation. Trends Cell Biol 2002;12:130–138.

    Article  PubMed  CAS  Google Scholar 

  85. Luttrell LM, Ferguson SSG, Daaka Y, et al. β-Arrestin-dependent formation of β2 adrenergic receptor/Src protein kinase complexes. Science 1999;283:655–661.

    Article  PubMed  CAS  Google Scholar 

  86. DeFea KA, Vaughn ZD, O’Bryan EM, Nishijima D, Dery O, Bunnett NW. The proliferative and antiapoptotic effects of substance P are facilitated by formation of a β-arrestin-dependent scaffolding complex. Proc Natl Acad Sci USA 2000;97:11,086–11,091.

    Article  PubMed  CAS  Google Scholar 

  87. Barlic J, Andrews JD, Kelvin AA, et al. Regulation of tyrosine kinase activation and granule release through β-arrestin by CXCRI. Nature Immunol 2000;1:227–233

    Article  CAS  Google Scholar 

  88. Ghalayini AJ, Desai N, Smith KR, Holbrook RM, Elliott MH, Kawakatsu. Light-dependent association of Src with photoreceptor rod outer segment membrane proteins in vivo. J Biol Chem 2002;277:1469–1476.

    Article  PubMed  CAS  Google Scholar 

  89. Milano SK, Pace HC, Kim YM, Brenner C, Benovic JL. Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry 2002;41:3321–3328.

    Article  PubMed  CAS  Google Scholar 

  90. Miller WE, Maudsley S, Ahn S, Kahn KD, Luttrell, LM, Lefkowitz RJ. β-Arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. J Biol Chem 2000;275:11,312–11,319.

    Article  PubMed  CAS  Google Scholar 

  91. Ahn S, Maudsley S, Luttrell LM, Lefkowitz RJ, Daaka Y. Src-mediated tyrosine phosphorylation of dynamin is required for beta2-adrenergic receptor internalization and mitogen-activated protein kinase signaling. J Biol Chem 1999;274:1185–1188.

    Article  PubMed  CAS  Google Scholar 

  92. Ahn S, Kim J, Lucaveche CL, et al. Src-dependent tyrosine phosphorylation regulates dynamin self-assembly and ligand-induced endocytosis of the epidermal growth factor receptor. J Biol Chem. 2002;277:26,642–26,651.

    Article  PubMed  CAS  Google Scholar 

  93. Penela P, Elorza A, Sarnage S, Mayor F Jr. Beta-arrestin and c-Src-dependent degradation of G-protein-coupled receptor kinase 2. EMBO J 2001;20:5129–5138.

    Article  PubMed  CAS  Google Scholar 

  94. Imamura T, Huang J, Dalle S, et al. Beta-Arrestin-mediated recruitment of the Src family kinase Yes mediates endothelin-1-stimulated glucose transport. J Biol Chem 2001;276:43,663–43,667.

    Article  PubMed  CAS  Google Scholar 

  95. Luttrell LM, Daaka Y, Lefkowitz RJ. Regulation of tyrosine kinase cascades by G-protein coupled receptors. Curr Opin Cell Biol 1999;11:177–183.

    Article  PubMed  CAS  Google Scholar 

  96. Luttrell LM. Activation and targeting of MAP kinases by G protein-coupled receptors. Can J Physiol Pharm 2002;80:375–382.

    Article  CAS  Google Scholar 

  97. Luttrell LM. Location, location, location. Spatial and temporal regulation of MAP kinases by G protein-coupled receptors. J Mol Endo 2003;30:117–126.

    Article  CAS  Google Scholar 

  98. Yang M, Zhang H, Voyno-Yasenetskaya T, Ye RD. Requirement of G beta-gamma and c-Src in D2 dopamine receptor-mediated nuclear factor-kappa B activation. Mol Pharmacol 2003;64:447–455.

    Article  PubMed  CAS  Google Scholar 

  99. Kryiakis JM, Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem 1996;271:24,313–24,316.

    Article  Google Scholar 

  100. Pearson G, Robinson F, Beers Gibson T, et al. Mitogen-activated protein (MAP) kinase pathways: Regulation and physiologic functions. Endocr Rev 2001;22:153–183.

    Article  PubMed  CAS  Google Scholar 

  101. Burack WR, Shaw AS. Signal transduction: hanging on a scaffold. Curr Opin Cell Biol 2000;12: 211–216.

    Article  PubMed  CAS  Google Scholar 

  102. Elion EA. The STE5p scaffold. J Cell Sci 2001;114:3967–3978.

    PubMed  CAS  Google Scholar 

  103. Whitmarsh AJ, Cavanagh J, Tournier C, Yasuda J, Davis RJ. A mammalian scaffold complex that selectively mediates MAP kinase activation. Science 1998;281:1671–1674.

    Article  PubMed  CAS  Google Scholar 

  104. Yasuda J, Whitmarsh AJ, Cavanagh J, Sharma M, Davis RJ. The JIP group of mitogen-activated protein kinase scaffold proteins. Mol Cell Biol 1999;19:7245–7254.

    PubMed  CAS  Google Scholar 

  105. McDonald PH, Chow C-W, Miller WE, et al. β-Arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 2000;290:1574–1577.

    Article  PubMed  CAS  Google Scholar 

  106. Miller WE, McDonald PH, Cai SF, Field MF, Davis RJ, Lefkowitz RJ. Identification of a motif in the carboxy terminus of β—arrestin2 responsible for activation of JNK3. J Biol Chem 2001;276: 27,770–27,777.

    Article  PubMed  CAS  Google Scholar 

  107. Scott MG, Le Rouzic E, Perianin A, et al. Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export sequence in beta-arrestin2. J Biol Chem 2002;277: 37,693–37,701.

    Article  PubMed  CAS  Google Scholar 

  108. Wang P, Wu Y, Ge X, Ma L, Pei G. Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus. J Biol Chem 2003;278: 11,648–11,653.

    Article  PubMed  CAS  Google Scholar 

  109. Tohgo A, Pierce KL, Choy EW, Lefkowitz RJ, Luttrell LM. Beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1A receptor stimulation. J Biol Chem 2002;277:9429–9436.

    Article  PubMed  CAS  Google Scholar 

  110. Ahn S, Nelson CD, Garrison TR, Miller WE, Lefkowitz RJ. Desensitization, internalization, and signaling functions of beta-arrestins demonstrated by RNA interference. Proc Natl Acad Sci USA 2003;100:1740–1744.

    Article  PubMed  CAS  Google Scholar 

  111. Wei H, Ahn S, Shenoy SK, et al. Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci USA 2003;100: 10,782–10,787.

    Article  PubMed  CAS  Google Scholar 

  112. Azzi M, Charest PG, Angers S, et al. Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci USA 2003;100: 11,406–11,411.

    Article  PubMed  CAS  Google Scholar 

  113. DeFea KA, Zalevsky J, Thoma MS, Dery O, Mullins RD, Bunnett NW. β-Arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 2000; 148:1267–1281.

    Article  PubMed  CAS  Google Scholar 

  114. Luttrell LM, Roudabush FL, Choy EW, et al. Activation and targeting of extracellular signal-regulated kinases by β-arrestin scaffolds. Proc Natl Acad Sci USA 2001:98;2449–2454.

    Article  PubMed  CAS  Google Scholar 

  115. Gutkind JS. The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 1998;273:1839–1842.

    Article  PubMed  CAS  Google Scholar 

  116. Pierce KL, Luttrell LM, Lefkowitz RJ. New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 2001;20:1532–1539.

    Article  PubMed  CAS  Google Scholar 

  117. Eguchi S, Numaguchi K, Iwasaki H, et al. Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J Biol Chem 1998;273: 8890–8896.

    Article  PubMed  CAS  Google Scholar 

  118. Heeneman S, Haendeler J, Saito Y, Ishida M, Berk BC. Angiotensin II induces transactivation of two different populations of the platelet-derived growth factor beta receptor. Key role for the p66 adaptor protein Shc. J Biol Chem 2000;275;15,926–15,932.

    Article  PubMed  CAS  Google Scholar 

  119. Gschwind A, Zwick E, Prenzel N, Leserer M, Ullrich A. Cell communication networks: epidermal growth factor receptor transactivation as the paradigm for interreceptor signal transmission. Oncogene 2001;20: 1594–1600.

    Article  PubMed  CAS  Google Scholar 

  120. Murasawa S, Mori Y, Nozawa Y, et al. Angiotensin II type 1 receptor-induced extracellular signal-regulated protein kinase activation is mediated by Ca2+/calmodulin-dependent transactivation of epidermal growth factor receptor. Circ Res 1998;82:1338–1348.

    PubMed  CAS  Google Scholar 

  121. Castagliuolo I, Valenick L, Liu J, Pothoulakis C. Epidermal growth factor receptor transactivation mediates substance P-induced mitogenic responses in U-373 MG cells. J Biol Chem 2000;275:26,545–26,550.

    Article  PubMed  CAS  Google Scholar 

  122. Tohgo A, Choy EW, Gesty-Palmer D, et al. The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J Biol Chem 2003;278: 6258–6267.

    Article  PubMed  CAS  Google Scholar 

  123. Lin F-T, Miller WE, Luttrell LM, Lefkowitz RJ. Feedback regulation of beta-arrestin1 function by extracellular signal-regulated kinases. J Biol Chem 1999;274;15,971–15,974.

    Article  PubMed  CAS  Google Scholar 

  124. Pitcher JA, Tesmer JJ, Freeman JL, Capel WD, Stone WC, Lefkowitz RJ. Feedback inhibition of G protein-coupled receptor kinase 2 (GRK2) activity by extracellular signal-regulated kinases. J Biol Chem 1999; 274:34,531–34,534.

    Article  PubMed  CAS  Google Scholar 

  125. Elorza A, Sarnago S, Mayor F Jr. Agonist-dependent modulation of G protein-coupled receptor kinase 2 by mitogen-activated protein kinases. Mol Pharm 2000;57:778–783.

    CAS  Google Scholar 

  126. Ogier-Denis E, Pattingre S, El Benna J, Codogno P. Erk1/2-dependent phosphorylation of Galpha-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J Biol Chem 2000; 275:39,090–39,095.

    Article  PubMed  CAS  Google Scholar 

  127. Elorza A, Penela P, Sarnago S, Mayor F Jr. MAPK-dependent degradation of G protein-coupled receptor kinase 2. J Biol Chem 2003;278:29,164–29,173.

    Article  PubMed  CAS  Google Scholar 

  128. Ge L, Ly Y, Hollenberg M, DeFea K. A beta-arrestin-dependent scaffold is associated with prolonged MAPK activation in pseudopodia during protease-activated receptor-2-induced chemotaxis. J Biol Chem 2003;278: 34,418–34,426.

    Article  PubMed  CAS  Google Scholar 

  129. Fong AM, Premont RT, Richardson RM, Yu YR, Lefkowitz RJ, Patel DD. Defective lymphocyte chemotaxis in beta-arrestin2-and GRK6-deficient mice. Proc Natl Acad Sci USA 2002;99:7478–7483.

    Article  PubMed  CAS  Google Scholar 

  130. Sun Y, Cheng Z, Ma L, Pei G. Beta-arrestin 2 is critically involved in CXCR4-mediateed chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem 2002;277:49,212–49,219.

    Article  PubMed  CAS  Google Scholar 

  131. Wang P, Gao H, Ni Y, et al. Beta-arrestin 2 functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2. J Biol Chem 2003; 278:6363–6370.

    Article  PubMed  CAS  Google Scholar 

  132. Perry SJ, Baillie GS, Kohout TA, et al. Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins. Science 2002;298:834–836.

    Article  PubMed  CAS  Google Scholar 

  133. Baillie GS, Sood A, McPhee I, et al Beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi. Proc Natl Acad Sci USA 2003;100:940–945.

    Article  PubMed  CAS  Google Scholar 

  134. Bhattacharya M, Anborgh PH, Babwah AV, et al. Beta-arrestins regulate a Ral-GDS Ral effector pathway that mediates cytoskeletal reorganization. Nat Cell Biol 2002;4:547–555.

    PubMed  CAS  Google Scholar 

  135. Goel R, Baldassare JJ. beta-Arrestin 1 couples thrombin to the rapid activation of the Akt pathway. Ann NY Acad Sci 2002;973:138–141.

    PubMed  CAS  Google Scholar 

  136. Nakazawa M, Wada Y, Tamai M. Arrestin gene mutations in autosomal recessive retinitis pigmentosa. Arch Ophthalmol 1998;116:498–501.

    PubMed  CAS  Google Scholar 

  137. Yamada T, Matsumoto M, Kadoi C, Nagaki Y, Hayasaka Y, Hayasaka S. 1147 del A mutation in the arrestin gene in Japanese patients with Oguchi disease. Ophthal Genetics 1999;20:117–120.

    Article  CAS  Google Scholar 

  138. Dryja TP. Molecular genetics of Oguchi disease, fundus albipunctatus, and other forms of stationary night blindness. Am J Ophthal 2000;130:547–563.

    Article  PubMed  CAS  Google Scholar 

  139. Chen J, Simon MI, Matthes MT, Yasumura D, LaVail MM. Increased susceptibility to light damage in an arrestin knockout mouse model of Oguchi disease (stationary night blindness). Invest Ophthalmol Vis Sci 1999; 40: 2978–2982.

    PubMed  CAS  Google Scholar 

  140. Alloway PG, Howard L, Dolph PJ. The formation of stable rhodopsin-arrestin complexes induces apoptsis and photoreceptor cell degeneration. Neuron 2000;28:129–138.

    Article  PubMed  CAS  Google Scholar 

  141. Kiselev A, Socolich M, Vinos J, Hardy RW, Zuker CS, Ranganathan R. A molecular pathway for light-dependent photoreceptor apoptosis in Drosophila. Neuron 2000;28:139–152.

    Article  PubMed  CAS  Google Scholar 

  142. Miller WE, Lefkowitz RJ. Arrestins as signaling molecules involved in apoptotic pathways: a real eye opener. Sci STKE 2001;2001:PE1.

    Article  PubMed  CAS  Google Scholar 

  143. Luttrell LM, van Biesen T, Hawes BE, Koch WJ, Touhara K, Lefkowitz RJ. G beta gamma subunits mediate mitogen-activated protein kinase activation by the tyrosine kinase insulin-like growth factor 1 receptor. J Biol Chem 1995;270:16,495–16,498.

    Article  PubMed  CAS  Google Scholar 

  144. Lin FT, Daaka Y, Lefkowitz RJ. Beta-Arrestins regulate mitogenic signaling and clathrin-mediated endocytosis of the insulin-like growth factor I receptor. J Biol Chem 1998;273:31,640–31,643.

    Article  PubMed  CAS  Google Scholar 

  145. Dalle S, Ricketts W, Imamura T, Vollenweider P, Olefsky JM. Insulin and insulin-like growth factor I receptors utilize different G protein signaling components. J Biol Chem 2001;276:15,688–15,695.

    Article  PubMed  CAS  Google Scholar 

  146. Hupfeld CJ, Dalle S, Olefsky JM. Beta-Arrestin 1 down-regulation after insulin treatment is associated with supersensitization of beta 2 adrenergic receptor G alpha s signaling in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 2003;100:161–166.

    Article  PubMed  CAS  Google Scholar 

  147. Dalle S, Imamura T, Rose DW, et al. Insulin induces heterologous desensitization of G-protein-coupled receptor and insulin-like growth factor I signaling by down-regulating beta-arrestin-1. Mol Cell Biol 2002;22: 6272–6285.

    Article  PubMed  CAS  Google Scholar 

  148. Povsic TJ, Kohout TA, Lefkowitz RJ. Beta-Arrestin1 mediates IGF-1 activation of PI-3-K and anti-apoptosis. J Biol Chem 2003;278:51,334–51,339.

    Article  PubMed  CAS  Google Scholar 

  149. Chen W, Kirkbride KC, How T, et al. Beta-arrestin 2 mediates endocytosis of type III TGF-beta receptor and down-regulation of its signaling. Science 2003;301:1394–1397.

    Article  PubMed  CAS  Google Scholar 

  150. Wu JH, Peppel K, Nelson CD, et al. The adaptor protein beta-arrestin2 enhances endocytosis of the low density lipoprotein receptor. J Biol Chem 2003;278:44,238–44,245.

    Article  PubMed  CAS  Google Scholar 

  151. Chen W, Hu LA, Semenov MV, et al. Beta-Arrestin1 modulates lymphoid enhancer factor transcriptional activity through interaction with phosphorylated dishevelled proteins. Proc Natl Acad Sci USA 2001;98: 14,889–14,894.

    Article  PubMed  CAS  Google Scholar 

  152. Chen W, ten Berge D, Brown J, et al. Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 2003;301:1391–1394.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Luttrell, L.M. (2005). Regulators of GPCR Activity. In: Devi, L.A. (eds) The G Protein-Coupled Receptors Handbook. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59259-919-6_8

Download citation

Publish with us

Policies and ethics