Skip to main content

Cannabinoid Receptors and Their Ligands in Brain and Other Tissues

  • Chapter
Marihuana and Medicine

Abstract

Mammalian tissues contain two types of cannabinoid receptor, CB1 and CB2, both coupled to their effector systems through Gi1i/0 proteins. CB1 receptors are present in the central nervous system as well as in certain neuronal and nonneuronal peripheral tissues. Some CB1 receptors occur at nerve terminals where they modulate transmitter release when activated. CB2 receptors are found mainly in cells of the immune system. The possibility that mammalian tissues express additional cannabinoid receptor types of physiological significance cannot be excluded. Indeed, preliminary pharmacological evidence supporting this possibility already exists. Endogenous ligands for cannabinoid receptors have also been discovered, the most important being arachidonoylethanolamide and 2-arachidonoyl glycerol. These ligands and their receptors constitute the endogenous cannabinoid system. The discovery of this system has important physiological, pathophysiological, pharmacological, and therapeutic implications. Already selective CB1- and CB2-receptor agonists and antagonists have been developed and two cannabinoid receptor agonists, ∆9-tetrahydrocannabinol and nabilone, are used clinically as antiemetics or to boost appetite. Additional therapeutic uses of cannabinoid receptor agonists may include the suppression of some multiple sclerosis and spinal injury symptoms and the management of glaucoma, bronchial asthma, pain, and inflammatory disorders. One possible therapeutic strategy for the future is the development and use of drugs that activate cannabinoid receptors indirectly by modulating extracellular levels of endogenous cannabinoids. CB1-receptor agonists that do not cross the blood-brain barrier or whose potency is determined more by affinity than efficacy may also have clinical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pertwee, R. G. (1997) Pharmacology of cannabinoid CBI and CB2 receptors. Pharmacol. Ther. 74, 129–180.

    PubMed  CAS  Google Scholar 

  2. Stefano, G.B., Liu, Y., and Goligorsky, M.S. (1996) Cannabinoid receptors are coupled to nitric oxide release in invertebrate immunocytes, microglia, and human monocytes. J. Biol. Chem. 271,19, 238–19, 242.

    Google Scholar 

  3. Tsou, K., Brown, S., Safludo-Pena, M. C., Mackie, K., and Walker, J. M. (1998) Immunohistochemical distribution of cannabinoid CBI receptors in the rat central nervous system. Neuroscience, 83, 393–411.

    Article  PubMed  CAS  Google Scholar 

  4. Gifford, A. N. and Ashby, C. R. (1996) Electrically evoked acetylcholine release from hippocampal slices is inhibited by the cannabinoid receptor agonist, WIN 55212–2, and is potentiated by the cannabinoid antagonist, SR 141716A. J. Pharmacol. Exp. Ther. 277, 1431–1436.

    PubMed  CAS  Google Scholar 

  5. Gifford, A. N., Samiian, L., Gatley, S. J., and Ashby, C. R. (1997) Examination of the effect of the cannabinoid receptor agonist, CP 55,940, on electrically evoked transmitter release from rat brain slices. Eur. J. Pharmacol. 324, 187–192.

    Article  PubMed  CAS  Google Scholar 

  6. Shen, M., Piser, T. M., Seybold, V. S., and Thayer, S. A. (1996) Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J. Neurosci. 16, 4322–4334.

    PubMed  CAS  Google Scholar 

  7. Cadogan, A.-K., Alexander, S. P. H., Boyd, E. A., and Kendall, D. A. (1997) Influence of cannabinoids on electrically evoked dopamine release and cyclic AMP generation in the rat striatum. J. Neurochem. 69, 1131–1137.

    Article  PubMed  CAS  Google Scholar 

  8. Schlicker, E., Timm, J., and Göthert, M. (1996) Cannabinoid receptor-mediated inhibition of dopamine release in the retina. Naunyn-Schmiedeberg’s Arch. Pharmacol. 354, 791–795.

    Article  PubMed  CAS  Google Scholar 

  9. Schlicker, E., Timm, J., Zentner, J., and Göthert, M. (1997) Cannabinoid CBI receptor-mediated inhibition of noradrenaline release in the human and guinea-pig hippocampus. Naunyn-Schmiedeberg’s Arch. Pharmacol. 356, 583–589.

    Article  PubMed  CAS  Google Scholar 

  10. Coutts, A. A. and Pertwee, R. G. (1997) Inhibition by cannabinoid receptor agonists of acetylcholine release from the guinea-pig myenteric plexus. Br. J. Pharmacol. 121, 1557–1566.

    Article  PubMed  CAS  Google Scholar 

  11. Ishac, E. J. N, Jiang, L., Lake, K. D., Varga, K., Abood, M. E., and Kunos, G. (1996) Inhibition of exocytotic noradrenaline release by presynaptic cannabinoid CBI receptors on peripheral sympathetic nerves. Br. J. Pharmacol. 118, 2023–2028.

    Article  PubMed  CAS  Google Scholar 

  12. Stefano, G. B., Salzet, B., Rialas, C. M., Pope, M., Kustka, A., Neenan, K., Pryor, S., and Salzet, M. (1997) Morphine-and anandamide-stimulated nitric oxide production inhibits presynaptic dopamine release. Brain Res. 763, 63–68.

    Article  PubMed  CAS  Google Scholar 

  13. Pertwee, R. G., Fernando, S. R., Nash, J. E., and Coutts, A. A. (1996) Further evidence for the presence of cannabinoid CBI receptors in guinea-pig small intestine. Br. J. Pharmacol. 118, 2199–2205.

    Article  PubMed  CAS  Google Scholar 

  14. Galiègue, S., Mary, S., Marchand, J., Dussossoy, D., Carrière, D., Carayon, P., Bouaboula, M., Shire, D., Le Fur, G., and Casellas, P. (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J. Biochem. 232, 54–61.

    Article  PubMed  Google Scholar 

  15. Munro, S., Thomas, K. L., and Abu-Shaar, M. (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61–65.

    Article  PubMed  CAS  Google Scholar 

  16. Skaper, S. D., Buriani, A., Dal Toso, R., Petrelli, L., Romanello, S., Facci, L., and Leon, A. (1996) The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar granule neurons. Proc. Nat. Acad. Sci. USA. 93, 3984–3989.

    Article  PubMed  CAS  Google Scholar 

  17. Pertwee, R. G. (1998) Advances in cannabinoid receptor pharmacology, In: Cannabis (Brown, D., ed.) Harwood Academic Publishers, in press.

    Google Scholar 

  18. Pertwee, R. G. (1998) Pharmacological, physiological and clinical implications of the discovery of cannabinoid receptors. Biochem. Soc. Transact. 26, 267–272.

    CAS  Google Scholar 

  19. Di Marzo, V., Fontana, A., Cadas, H., Schinelli, S., Cimino, G., Schwartz, J.-C., and Piomelli, D. (1994) Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372, 686–691.

    Article  PubMed  Google Scholar 

  20. Bisogno, T., Sepe, N., Melck, D., Maurelli, S., De Petrocellis, L., and Di Marzo, V. (1997) Biosynthesis, release and degradation of the novel endogenous cannabimimetic metabolite 2-arachidonoylglycerol in mouse neuroblastoma cells. Biochem. J. 322, 671–677.

    PubMed  CAS  Google Scholar 

  21. Di Marzo, V., De Petrocellis, L., Bisogno, T., Melck, D., and Sepe, N. (1997) Cannabimimetic fatty acid derivatives: biosynthesis and catabolism, In: Proc. 4th Int. Congress on Essential Fatty Acids and Eicosanoids, Edinburgh 20–24 July,in press.

    Google Scholar 

  22. Fernando, S. R. and Pertwee, R. G. (1997) Evidence that methyl arachidonyl fluorophosphonate is an irreversible cannabinoid receptor antagonist. Br. J. Pharmacol. 121, 1716–1720.

    Article  PubMed  CAS  Google Scholar 

  23. Bouaboula, M., Perrachon, S., Milligan, L., Canat, X., Rinaldi-Carmona, M., Portier, M., Barth, F., Calandra, B. Pecceu, F., Lupker, J., Maffrand, J.-P., Le Fur, G., and Casellas, P. (1997) A selective inverse agonist for central cannabinoid receptor inhibits mitogen-activated protein kinase activation stimulated by insulin or insulin-like growth factor 1. Evidence for a new model of receptor/ligand interactions. J. Biol. Chem. 272 22,330–22,339.

    Google Scholar 

  24. Milligan, G. and Bond, R. A. (1996) Inverse agonism and the regulation of receptor number. Trends Pharmacol. Sci. 18, 468–474.

    Google Scholar 

  25. Landsman, R. S., Burkey, T. H., Consroe, P., Roeske, W. R., and Yamamura, H. I. (1997) SR141716A is an inverse agonist at the human cannabinoid CB1 receptor. Eur. J. Pharmacol. 334, R1 — R2.

    Google Scholar 

  26. Petitet, F., Jeantaud, B., Capet, M., and Doble, A. (1997) Interaction of brain cannabinoid receptors with guanine nucleotide binding protein. A radioligand binding study. Biochem. Pharmacol. 54, 1267–1270.

    Article  PubMed  CAS  Google Scholar 

  27. Rinaldi-Carmona, M., Barth, F., Milian, J., Derocq, J.-M., Casellas, P., Congy, C., Oustric, D., Sarran, M., Bouaboula, M., Calandra, B., Portier, M., Shire, D., Brelière, J.-C., and Le Fur, G. (1998) SR144528, the first potent and selective antagonist of the CB2 cannabinoid receptor. J. Pharmacol. Exp. Ther. 284, 644–650.

    Google Scholar 

  28. Gareau, Y., Dufresne, C., Gallant, M., Rochette, C., Sawyer, N., Slipetz, D. M., Tremblay, N., Weech, P. K., Metters, K. M., and Labelle, M. (1996) Structure activity relationships of tetrahydrocannabinol analogues on human cannabinoid receptors. Bioorg. Med. Chem. Letts. 6, 189–194.

    Article  CAS  Google Scholar 

  29. Griffin, G., Fernando, S. R., Ross, R. A., MacKay, N. G., Ashford, M. L. J., Shire, D., Huffman, J. W., Yu, S., Lainton, J. A. H., and Pertwee, R. G. (1997) Evidence for the presence of CB2-like cannabinoid receptors on peripheral nerve terminals. Eur. J. Pharmacol. 339, 53–61.

    Article  PubMed  CAS  Google Scholar 

  30. Gallant, M., Dufresne, C., Gareau, Y., Guay, D., Leblanc, Y., Prasit, P., Rochette, C., Sawyer, N., Slipetz, D. M., Tremblay, N., Metters, K. M., and Labelle, M. (1996) New class of potent ligands for the human peripheral cannabinoid receptor. Bioorg. Med. Chem. Letts. 6, 2263–2268.

    Google Scholar 

  31. Facci, L., Dal Toso, R., Romanello, S., Buriani, A., Skaper, S. D., and Leon, A. (1995) Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide. Proc. Natl. Acad. Sci. USA 92, 3376–3380.

    Article  PubMed  CAS  Google Scholar 

  32. Felder, C. C., Briley, E. M., Axelrod, J., Simpson, J. T., Mackie, K., and Devane, W. A. (1993) Anandamide, an endogenous cannabimimetic eicosanoid, binds to the cloned human cannabinoid receptor and stimulates receptor-mediated signal transduction. Proc. Natl. Acad. Sci. USA 90, 7656–7660.

    Article  PubMed  CAS  Google Scholar 

  33. Felder, C. C., Joyce, K. E., Briley, E. M., Mansouri, J., Mackie, K., Blond, O., Lai, Y., Ma, A. L., and Mitchell, R. L. (1995) Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors. Mol. Pharmacol. 48, 443–450.

    PubMed  CAS  Google Scholar 

  34. Vogel, Z., Barg, J., Levy, R., Saya, D., Heldman, E., and Mechoulam, R. (1993) Anandamide, a brain endogenous compound, interacts specifically with cannabinoid receptors and inhibits adenylate cyclase. J. Neurochem. 61, 352–355.

    Article  PubMed  CAS  Google Scholar 

  35. Barg, J., Fride, E., Hanus, L., Levy, R., Matus-Leibovitch, N., Heldman, E., Bayewitch, M., Mechoulam, R., and Vogel, Z. (1995) Cannabinomimetic behavioral effects of and adenylate cyclase inhibition by two new endogenous anandamides. Eur. J. Pharmacol. 287, 145–152.

    Article  PubMed  CAS  Google Scholar 

  36. Bayewitch, M., Rhee, M.-H., Avidor-Reiss, T., Breuer, A., Mechoulam, R., and Vogel, Z. (1996) (-)-A9 antagonizes the peripheral cannabinoid receptor-mediated inhibition of adenylyl cyclase. J. Biol. Chem. 271, 9902–9905.

    Google Scholar 

  37. Bayewitch, M., Avidor-Reiss, T., Levy, R., Barg, J., Mechoulam, R., and Vogel, Z. (1995) The peripheral cannabinoid receptor: adenylate cyclase inhibition and G protein coupling. FEBS Letts. 375, 143–147.

    Article  CAS  Google Scholar 

  38. Slipetz, D. M., O’Neill, G. P., Favreau, L., Dufresne, C., Gallant, M., Gareau, Y., Guay, D., Labelle, M., and Metters, K. M. (1995) Activation of the human peripheral cannabinoid receptor results in inhibition of adenylyl cyclase. Mol. Pharmacol. 48, 352–361.

    PubMed  CAS  Google Scholar 

  39. Shire, D., Calandra, B., Rinaldi-Carmona, M., Oustric, D., Pessègue, B., Bonnin-Cabanne, O., Le Fur, G., Caput, D., and Ferrara, P. (1996) Molecular cloning, expression and function of murine CB2 peripheral cannabinoid receptor. Biochim. Biophys. Acta 1307, 132–136.

    Article  PubMed  Google Scholar 

  40. Shire, D., Carillon, C., Kaghad, M., Calandra, B., Rinaldi-Carmona, M., Le Fur, G., Caput, D., and Ferrara, P. (1995) An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing. J. Biol. Chem. 270, 3726–3731.

    Article  PubMed  CAS  Google Scholar 

  41. Pertwee, R., Griffin, G., Fernando, S., Li, X., Hill, A., and Makriyannis, A. (1995) AM630, a competitive cannabinoid receptor antagonist. Life Sci. 56, 1949–1955.

    Article  PubMed  CAS  Google Scholar 

  42. Pertwee, R. G., Griffin, G., Lainton, J. A. H., and Huffman, J. W. (1995) Pharmacological characterization of three novel cannabinoid receptor agonists in the mouse isolated vas deferens. Eur. J. Pharmacol. 284, 241–247.

    Article  PubMed  CAS  Google Scholar 

  43. Hosohata, K., Quock, R. M., Hosohata, Y., Burkey, T. H., Makriyannis, A., Consroe, P., Roeske, W. R., and Yamamura, H. I. (1997) AM630 is a competitive cannabinoid receptor antagonist in the guinea pig brain. Life Sci. 61, PL115–118.

    Google Scholar 

  44. Hosohata, Y., Quock, R. M., Hosohata, K., Makriyannis, A., Consroe, P., Roeske, W. R., and Yamamura, H. I. (1997) AM630 antagonism of cannabinoid-stimulated [35S]GTPyS binding in the mouse brain. Eur. J. Pharmacol. 321, R1 - R3.

    Article  PubMed  CAS  Google Scholar 

  45. Pertwee, R. G. (1997) Cannabis and cannabinoids: pharmacology and rationale for clinical use. Pharmaceut. Sci. 3, 539–545.

    CAS  Google Scholar 

  46. Pertwee, R. G. (1996) Cannabinoid receptor ligands: clinical and neuropharmacological considerations relevant to future drug discovery and development. Exp. Opin. Invest. Drugs 5, 1245–1253.

    Article  CAS  Google Scholar 

  47. Hollister, L. E. (1986) Health aspects of cannabis. Pharmacol. Rev. 38, 1–20.

    PubMed  CAS  Google Scholar 

  48. Pertwee, R. G. (1995) Pharmacological, physiological and clinical implications of the discovery of cannabinoid receptors: an overview, In: Cannabinoid Receptors ( Pertwee, R. G., ed.), Academic Press, London, pp. 1–34.

    Google Scholar 

  49. Finnegan-Ling, D. and Musty, R. E. (1994) Marinol and phantom limb pain: a case study. Proc. Int. Cannabinoid Res. Soc. p. 53.

    Google Scholar 

  50. Herzberg, U., Eliav, E., Bennett, G. J., and Kopin, I. J. (1997) The analgesic effects of R(+)-WIN 55,212–2 mesylate, a high affinity cannabinoid agonist, in a rat model of neuropathic pain. Neurosci. Letts. 221, 157–160.

    Article  CAS  Google Scholar 

  51. Sim, L. J., Selley, D. E., and Childers, S. R. (1995) In vitro autoradiography of receptor-activated G proteins in rat brain by agonist-stimulated guanylyl 5’-[7-[35S]thio]-triphosphate binding. Proc. Natl. Acad. Sci. USA 92, 7242–7246.

    CAS  Google Scholar 

  52. Selley, D. E., Stark, S., Sim, L. J., and Childers, S. R. (1996) Cannabinoid receptor stimulation of guanosine5’-O-(3-[35S]thio)triphosphate binding in rat brain membranes. Life Sci. 59, 659–668.

    Article  PubMed  CAS  Google Scholar 

  53. Burkey, T. H., Quock, R. M., Consroe, P., Ehlert, F. J., Hosohata, Y., Roeske, W. R., and Yamamura, H. I. (1997) Relative efficacies of cannabinoid CBI receptor agonists in the mouse brain. Eur J. Pharmacol. 336, 295–298.

    Article  PubMed  CAS  Google Scholar 

  54. Pertwee, R. G., Fernando, S. R., Griffin, G., Ryan, W., Razdan, R. K., Compton, D. R., and Martin, B. R. (1996) Agonist-antagonist characterization of 6’-cyanohex-2’-yne-As-tetrahydrocannabinol in two isolated tissue preparations. Eur. J. Pharmacol. 315, 195–201.

    Article  PubMed  Google Scholar 

  55. Pério, A., Rinaldi-Carmona, M., Maruani, J., Barth, F., Le Fur, G., and Soubrié, P. (1996) Central mediation of the cannabinoid cue: activity of a selective CB 1 antagonist, SR 141716A. Behay. Pharmacol. 7, 65–71.

    Google Scholar 

  56. Berdyshev, E. V., Boichot, E., Germain, N., Allain, N., Anger, J.-P., and Lagente, V. (1997) Influence of fatty acid ethanolamides and A9-tetrahydrocannabinol on cytokine and arachidonate release by mononuclear cells. Eur. J. Pharmacol. 330, 231–240.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pertwee, R.G. (1999). Cannabinoid Receptors and Their Ligands in Brain and Other Tissues. In: Nahas, G.G., Sutin, K.M., Harvey, D., Agurell, S., Pace, N., Cancro, R. (eds) Marihuana and Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-710-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-710-9_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5717-0

  • Online ISBN: 978-1-59259-710-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics