Skip to main content

Abstract

Degenerative joint disease, recognized as an increasing problem for society, is a direct result of an aging population (1). When patients present with joint pain, their primary concern is the relief of pain and return to a mobile life style. This often requires replacement of skeletal parts, such as hips, knees, elbows, finger joints, shoulder, and teeth, or fusion of vertebrae, and repair or augmentation of the jaw and bones of the skull. The result is a current worldwide orthopedic market valued at over $5 billion; joint replacement represents 68% of this market. The demand for knee replacements is increasing at approx 17%/yr, with some 300,000 knee joints replaced each year in the United States alone (2). This increase results in part from increased confidence in using such prostheses. Unfortunately, results do not reinforce this confidence: Long-term clinical results are scattered (3), and, although the overall rate of failure is reasonably low, it remains unacceptable. A further complication arises because the increase in younger patients undergoing total knee arthroplasty (TKA) may well lead to a higher incidence of eventual failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mraz SJ. Human body shop. Machine Design 1991; 11: 90–94.

    Google Scholar 

  2. Lutton and B. Ben-Nissan. Biomaterials in the marketplace: focus on orthopaedic and dental applications. Mater Technol 1997; 12: 121–126.

    Google Scholar 

  3. Goodfellow J. Knee prosthesis: one step forward two steps back, J Bone Joint Surg 1992; 74: 1–2.

    CAS  Google Scholar 

  4. Insall AH. Design of the knee prosthesis, in Surgery of the Knee 1984; (Insall JN, ed), Churchill Livingstone, New York, pp 587–629.

    Google Scholar 

  5. Pope MH and Fleming BC. Knee biomechanics and materials, in Total Knee Replacement 1991; (Laskin RS, ed), Springer-Verlag, pp 25–38.

    Google Scholar 

  6. Collier JP, Mayor MB, McNamara JL, Surprenant VA, and Jensen RE. Analysis of the failure of 122 polyethylene inserts from uncemented tibial knee components. Clin Orthop Related Res 1991; 273: 232–242.

    Google Scholar 

  7. Moran CG, Pinder IM, Lees TA, and Midwinter MJ. Survivorship analysis of uncemented porous-coated anatomic knee replacement. J Bone Joint Surg 1991; 6: 848–857.

    Google Scholar 

  8. Windsor RE, Scuberi GR, Moran MC, and Insall JN. Mechanisms of failure of the femoral and tibial components in total knee arthroplasty. Clin Orthop Rel Res 1989; 248: 15–20.

    Google Scholar 

  9. Moreland JR. Mechanisms of failure in total knee arthroplasty, Clin Orthop Rel Res 1988; 49–64.

    Google Scholar 

  10. Kilgus DJ, Moreland JR, Finerman G, and Funahushi TT. Catastrophic wear of tibial polyethylene inserts. Clin Orthop 1991; 273: 222–251.

    Google Scholar 

  11. Mintz L, Tsao AK, McCrae CR, Stulberg SD, and Wright T. The arthroscopic evaluation and characteristics of severe polyethylene wear in total knee arthroplasty, Clin Orthop 1991; 273: 222–251.

    Google Scholar 

  12. Oonishi H, Maeda A, Hamaguchi T, and Nabeshima T. Indications for cementless alumina ceramic total knee prosthesis and its limitations. Jap J Rheum Joint Surg 1984; 4: 311–322.

    Google Scholar 

  13. Oonishi H, Aono M, Murata N, and Kushitani S. Alumina versus polyethylene in total knee arthroplasty. Clin Orthop 1992; 282: 95–104.

    Google Scholar 

  14. Koshino T. Limb alignment in unicompartmental arthroplasty and clinical applications of the ceramic knee. Curr Opin Orthop 1994; 5: 75–80.

    Google Scholar 

  15. Huckstep RL. Cementless ceramic modular hip and femoral replacement. J Bone Joint Surg 1984; 66: 787.

    Google Scholar 

  16. Huckstep RL and Lutton PP. New concepts in stabilization and replacement of bone and joints. Mater Forum 1991; 15: 253–260.

    CAS  Google Scholar 

  17. Hartsock DL and Mclean AF. What the designer with ceramics needs. Am Ceramic Soc Bull. 1984; 63: 266–270.

    Google Scholar 

  18. Ben-Nissan B. Reliability and finite element analysis in ceramic engineering design. Mater Forum 1993; 17: 105–125.

    CAS  Google Scholar 

  19. Lamon J. Statistical approaches to failure for ceramic reliability assessment. J Am Ceram Soc 1988; 71: 106–12.

    Article  CAS  Google Scholar 

  20. Huiskes R and Chao EYS. Survey of finite element analysis in orthopaedic biomechanics: the first decade. J Biomech 1983; 16: 385–409.

    Article  CAS  Google Scholar 

  21. Beaupre GS, Vasu R, Carter DR, and Schurman DJ. Epiphyseal-based designs for tibial plateau components. II Stress analysis in the sagittal plane, J Biomech 1986; 19: 663–673.

    Article  CAS  Google Scholar 

  22. Vasu R, Carter DR, Schurman DJ, and Beaupre GS. Epiphyseal-based designs for tibial plateau components. I. Stress analysis in the frontal plane. J Biomech 1986; 19: 647–662.

    Article  CAS  Google Scholar 

  23. Huiskes IR, Weinans H, and Dalstra M. Adoptive bone remodelling and biomechanical design considerations for noncemented total hip arthroplasty. Orthopaedics, 1989; 12: 1255–1267.

    CAS  Google Scholar 

  24. Harrigan TP and Hamilton JJ. Optimality conditions for finite element simulation of adaptive bone remodeling. Int J Solids Struct 1992; 25: 23, 2897–2906.

    Article  Google Scholar 

  25. Weinans H, Huskies R, van Rietbergen B, Sumner DR, Turmer TM, and Galante JO. Adaptive bone remodelling around bonded noncemented total hip arthroplasty: a comparison between animal experiments and computer simulation, J Orthop Res 1993; 11: 500–513.

    Article  CAS  Google Scholar 

  26. Harrigan TP and Hamilton B. Finite element simulation of adaptive bone remodelling: A stability criterion and a time stepping method. Int J Numerical Methods Eng 1993; 25: 837–854.

    Article  Google Scholar 

  27. Harrigan TP and Hamilton J.T. Bone remodeling and structural optimization, J Biomech 1994; 27: 323–328.

    Article  CAS  Google Scholar 

  28. Payten WM. Integrated computer aided design, finite element analysis and bone remodelling simulation of a modular ceramic knee prosthesis 1996; Ph.D. Thesis, University of Technology, Sydney, Aus.

    Google Scholar 

  29. Huckstep RL, Pollack A, Taylor D, and Lutton PP. Design of cementless modular ceramic knee with screw fixation. J Bone Joint Surg 1986; 68: 336.

    Google Scholar 

  30. Atsui K, Tateishi H, Futani H, and Maruo S. Ceramic unicompartmental knee arthroplasty for spontaneous osteonecrosis of the knee joint. Bull Hosp Joint Dis 1997; 56: 233–236.

    CAS  Google Scholar 

  31. Lutton PP and Ben-Nissan B. Status of biomaterials for orthopaedic and dental applications. Part II: Bioceramics in orthopaedic and dental applications. Mater Technol 1997; 12: 107–111.

    Google Scholar 

  32. Lutton PP and Ben-Nissan B. Status of biomaterials for orthopaedic and dental applications. Part I: Materials, Mater. Technol 1997; 12: 59–63.

    Google Scholar 

  33. DeJong WF. La substance material dans lesos, Rec Tav Chim 1926; 45: 415–448.

    Google Scholar 

  34. Hench LL. Bioactive ceramics. Ann NY Acad Sci 1988; 523: 54–71.

    Article  CAS  Google Scholar 

  35. Klawitter H. Basic Investigation of Bone Growth Into a Porous Ceramic Material 1970; Ph.D. Thesis, Clemson University, Clemson SC.

    Google Scholar 

  36. Kay JF and Cook SD. Biologic profile of calcium phosphate coatings, in Hydroxylapatite Coatings in Orthopaedic Surgery 1993; (Geesink RGT and Manley MT, eds), Raven, New York, pp 89–106.

    Google Scholar 

  37. DeGroot K, Klein CPA, Wolke GJC, and de Blieck Hogervorst JMA, Calcium phosphate and hydroxyapatite ceramics, in CRC Handbook of Bioactive Calcium Phosphates, Vol. 2, 1990; (Yamamaro T, Hench LL, and Wilson J, eds), CRC, Boca Raton, FL, p. 3.

    Google Scholar 

  38. Lacefield WR. Hydroxyapatite coatings, in An Introduction to Bioceramics 1993; (Hench LL and Wilson J, eds) World Science, Singapore, pp. 223–238.

    Chapter  Google Scholar 

  39. Klein LC. Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specialty Shapes. 1988; Noyes, NJ.

    Google Scholar 

  40. Brinker CJ and Scherer GW. Sol-Gel Science: Physics and Chemistry of Sol-Gel Processing. Academic, London, 1990.

    Google Scholar 

  41. Soballe K, Hansen ES, Rasmussen HB, and Bunger C, The effects of osteoporosis, bone deficiency, bone graftings and micromation on fixation of porous-coated versus hydroxyapatite-coated implants, in Hydroxylapatite Coatings in Orthopaedic Surgery 1993; (Geesink RGT and Manley MT, eds), Raven, New York, pp. 107–136.

    Google Scholar 

  42. Lutton PP. Computer aided development of a modular cementless hip and femoral prosthesis, 1987; Ph.D. Thesis, University of New South Wales, Aus.

    Google Scholar 

  43. Bobyn JD. Optimum pore size for the fixation of porous surface metal implants by the ingrowth of bone, Clin Orthop 1980; 150: 263.

    Google Scholar 

  44. Huckstep RL. Modular cementless ceramic and titanium shoulder and humeral prosthesis. J Bone Joint Surg 1987; 69: 315.

    Google Scholar 

  45. Huckstep RL. Stabilization and prosthetic replacement in difficult fractures and bone tumors_ Clin Orthop Rel Res 1987; 221: 12–25.

    Google Scholar 

  46. Standard OC. Application of transformation toughened zirconia ceramics as bioceramics 1994; Ph.D. Thesis, University of New South Wales, Sydney, Aus.

    Google Scholar 

  47. Swain MV, Huckstep RL, Tsutsumi S, and Sasaki Y. Suitability of Mg-PSZ for hip endoprosthesis articulation against high molecular weight polyethylene. J. Adv Sci 1991; 4: 231–240.

    Article  Google Scholar 

  48. McNeice GM, Eng P, and Amstutz HC. Finite element studies in hip reconstruction, in Biomechanics IV (Univ. PV, ed.), 1976; University Park, Baltimore, pp. 394–405.

    Google Scholar 

  49. Rakotomanana RL, Leyvraz PF, Curniera, Heegaard JH, and Rubin PJ. Finite element model for evaluation of tibial prosthesis-bone interface in total knee replacement, J Biomech 1992; 12: 1413 1424.

    Google Scholar 

  50. Rubin PJ, Rakotomanana RL, Leyvraz PF, Zysset PK, Curnier A, and Heegaard JH. Frictional interface micromotions and anisotropic stress distribution in a femoral total hip component. A finite element model for evaluation of tibial prosthesis-bone interface in total knee replacement. J Biomech 1993; 12: 725–739.

    Article  Google Scholar 

  51. National Agency for Finite Element Models and Standards (NAFEMS). A finite element primer 1992; 3rd ed, NAJEMS, Bell and Bain, Ltd., Glasgow.

    Google Scholar 

  52. Lewis JL, Askew MJ, and Jaycox DP. Comparative evaluation of tibial component designs of total knee prostheses. J Bone J Surg 1982; 64: 129–135.

    CAS  Google Scholar 

  53. Hayes WC, Swenson LW, and Schurman DJ. Axisymmetric finite element analysis of the lateral tibial plateau, J Biomech 1978; 11: 21–33.

    Article  CAS  Google Scholar 

  54. Ashman RB, Rho JY, and Turner CH. Anatomical variation of orthotropic elastic moduli of the proximal human tibia. J Biomech 1989; 22: 895–900.

    Article  CAS  Google Scholar 

  55. Rohrle H, Scholten R, and Sollbach W. Analysis of stress distribution in natural and artificial knee joints on the femur side using the finite element method, in International Conference Proceedings on Finite Elements in Biomechanics 1980; (Simon, BR, ed), University of Arizona Press, Tucson, pp 781–794.

    Google Scholar 

  56. Rohrle H, Scholten R, Sigolotto C, and Sollbach W. Joint forces in the human pelvis-leg skeleton during walking, J Biomech 1984; 17: 409–424.

    Article  CAS  Google Scholar 

  57. Harrigan TP and Harris WH. Three-dimensional non-linear finite element study of the effect of cement-prosthesis debonding in cemented femoral total hip components J Biomech 1991; 24: 1047–1058.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Payten, W.M., Ben-Nissan, B. (2000). Development of a Modular Ceramic Knee Prosthesis. In: Wise, D.L., Trantolo, D.J., Lewandrowski, KU., Gresser, J.D., Cattaneo, M.V., Yaszemski, M.J. (eds) Biomaterials Engineering and Devices: Human Applications . Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-197-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-197-8_19

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-227-8

  • Online ISBN: 978-1-59259-197-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics