Skip to main content

Multiplex Imaging of Polymicrobial Communities—Murine Models to Study Oral Microbiome Interactions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2081))

Abstract

Similar to other mucosal surfaces of the body, the oral cavity hosts a diverse microbial flora that live in polymicrobial biofilm communities. It is the ecology of these communities that are the primary determinants of oral health (symbiosis) or disease (dysbiosis). As such, both symbiosis and dysbiosis are inherently polymicrobial phenomena. In an effort to facilitate studies of polymicrobial communities within rodent models, we developed a suite of synthetic luciferases suitable for multiplexed in situ analyses of microbial ecology and specific gene expression. Using this approach, it is feasible to noninvasively measure multiple luciferase signals in vivo with both spatial and temporal resolution. In the following chapter, we describe the relevant details and protocols used to establish a biophotonic imaging platform for the study of experimental polymicrobial oral biofilms and abscesses in mice. The protocols described here are specifically tailored for use with oral streptococci, but the general strategies are adaptable for a wide range of polymicrobial infection studies using other species.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gao L, Xu T, Huang G, Jiang S, Gu Y, Chen F (2018) Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell 9(5):488–500. https://doi.org/10.1007/s13238-018-0548-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lamont RJ, Koo H, Hajishengallis G (2018) The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol 16(12):745–759. https://doi.org/10.1038/s41579-018-0089-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanz M, Beighton D, Curtis MA, Cury JA, Dige I, Dommisch H, Ellwood R, Giacaman RA, Herrera D, Herzberg MC, Kononen E, Marsh PD, Meyle J, Mira A, Molina A, Mombelli A, Quirynen M, Reynolds EC, Shapira L, Zaura E (2017) Role of microbial biofilms in the maintenance of oral health and in the development of dental caries and periodontal diseases. Consensus report of group 1 of the Joint EFP/ORCA workshop on the boundaries between caries and periodontal disease. J Clin Periodontol 44(Suppl 18):S5–S11. https://doi.org/10.1111/jcpe.12682

    Article  PubMed  Google Scholar 

  4. Sudhakara P, Gupta A, Bhardwaj A, Wilson A (2018) Oral dysbiotic communities and their implications in systemic diseases. Dent J (Basel) 6(2):E10. https://doi.org/10.3390/dj6020010

    Article  Google Scholar 

  5. Kane SF (2017) The effects of oral health on systemic health. Gen Dent 65(6):30–34

    PubMed  Google Scholar 

  6. Kreth J, Giacaman RA, Raghavan R, Merritt J (2017) The road less traveled - defining molecular commensalism with Streptococcus sanguinis. Mol Oral Microbiol 32(3):181–196. https://doi.org/10.1111/omi.12170

    Article  CAS  Google Scholar 

  7. Redanz S, Cheng X, Giacaman RA, Pfeifer CS, Merritt J, Kreth J (2018) Live and let die: hydrogen peroxide production by the commensal flora and its role in maintaining a symbiotic microbiome. Mol Oral Microbiol 33(5):337–352. https://doi.org/10.1111/omi.12231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hajishengallis G, Lamont RJ (2016) Dancing with the stars: how choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts. Trends Microbiol 24(6):477–489. https://doi.org/10.1016/j.tim.2016.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robertson D, Smith AJ (2009) The microbiology of the acute dental abscess. J Med Microbiol 58(Pt 2):155–162. https://doi.org/10.1099/jmm.0.003517-0

    Article  CAS  PubMed  Google Scholar 

  10. Siqueira JF Jr, Rocas IN (2013) Microbiology and treatment of acute apical abscesses. Clin Microbiol Rev 26(2):255–273. https://doi.org/10.1128/CMR.00082-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Graham DB, Webb MD, Seale NS (2000) Pediatric emergency room visits for nontraumatic dental disease. Pediatr Dent 22(2):134–140

    CAS  PubMed  Google Scholar 

  12. Jundt JS, Gutta R (2012) Characteristics and cost impact of severe odontogenic infections. Oral Surg Oral Med Oral Pathol Oral Radiol 114(5):558–566. https://doi.org/10.1016/j.oooo.2011.10.044

    Article  PubMed  Google Scholar 

  13. Merritt J, Senpuku H, Kreth J (2016) Let there be bioluminescence: development of a biophotonic imaging platform for in situ analyses of oral biofilms in animal models. Environ Microbiol 18(1):174–190. https://doi.org/10.1111/1462-2920.12953

    Article  CAS  PubMed  Google Scholar 

  14. Abe T, Hajishengallis G (2013) Optimization of the ligature-induced periodontitis model in mice. J Immunol Methods 394(1-2):49–54. https://doi.org/10.1016/j.jim.2013.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bowen WH (2013) Rodent model in caries research. Odontology 101(1):9–14. https://doi.org/10.1007/s10266-012-0091-0

    Article  PubMed  Google Scholar 

  16. Peterson SN, Meissner T, Su AI, Snesrud E, Ong AC, Schork NJ, Bretz WA (2014) Functional expression of dental plaque microbiota. Front Cell Infect Microbiol 4:108. https://doi.org/10.3389/fcimb.2014.00108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ajdic D, McShan WM, McLaughlin RE, Savic G, Chang J, Carson MB, Primeaux C, Tian R, Kenton S, Jia H, Lin S, Qian Y, Li S, Zhu H, Najar F, Lai H, White J, Roe BA, Ferretti JJ (2002) Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99(22):14434–14439. https://doi.org/10.1073/pnas.172501299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu P, Alves JM, Kitten T, Brown A, Chen Z, Ozaki LS, Manque P, Ge X, Serrano MG, Puiu D, Hendricks S, Wang Y, Chaplin MD, Akan D, Paik S, Peterson DL, Macrina FL, Buck GA (2007) Genome of the opportunistic pathogen Streptococcus sanguinis. J Bacteriol 189(8):3166–3175. https://doi.org/10.1128/JB.01808-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vickerman MM, Iobst S, Jesionowski AM, Gill SR (2007) Genome-wide transcriptional changes in Streptococcus gordonii in response to competence signaling peptide. J Bacteriol 189(21):7799–7807. https://doi.org/10.1128/JB.01023-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Olson AB, Kent H, Sibley CD, Grinwis ME, Mabon P, Ouellette C, Tyson S, Graham M, Tyler SD, Van Domselaar G, Surette MG, Corbett CR (2013) Phylogenetic relationship and virulence inference of Streptococcus Anginosus group: curated annotation and whole-genome comparative analysis support distinct species designation. BMC Genomics 14:895. https://doi.org/10.1186/1471-2164-14-895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rahman M, Nguyen SV, McCullor KA, King CJ, Jorgensen JH, McShan WM (2015) Complete genome sequence of Streptococcus anginosus J4211, a clinical isolate. Genome Announc 3(6):e01440-15. https://doi.org/10.1128/genomeA.01440-15

    Article  PubMed  PubMed Central  Google Scholar 

  22. Merritt J, Niu G, Okinaga T, Qi F (2009) Autoaggregation response of Fusobacterium nucleatum. Appl Environ Microbiol 75(24):7725–7733. https://doi.org/10.1128/AEM.00916-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aiyar A, Xiang Y, Leis J (1996) Site-directed mutagenesis using overlap extension PCR. Methods Mol Biol 57:177–191. https://doi.org/10.1385/0-89603-332-5:177

    Article  CAS  PubMed  Google Scholar 

  24. Pogulis RJ, Vallejo AN, Pease LR (1996) In vitro recombination and mutagenesis by overlap extension PCR. Methods Mol Biol 57:167–176. https://doi.org/10.1385/0-89603-332-5:167

    Article  CAS  PubMed  Google Scholar 

  25. Xie Z, Okinaga T, Qi F, Zhang Z, Merritt J (2011) Cloning-independent and counterselectable markerless mutagenesis system in Streptococcus mutans. Appl Environ Microbiol 77(22):8025–8033. https://doi.org/10.1128/AEM.06362-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yoneda S, Loeser B, Feng J, Dmytryk J, Qi F, Merritt J (2014) Ubiquitous sialometabolism present among oral fusobacteria. PLoS One 9(6):e99263. https://doi.org/10.1371/journal.pone.0099263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xie Z, Qi F, Merritt J (2013) Development of a tunable wide-range gene induction system useful for the study of streptococcal toxin-antitoxin systems. Appl Environ Microbiol 79(20):6375–6384. https://doi.org/10.1128/AEM.02320-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Johnson SA, van Tets IG, Nicolson SW (1999) Sugar preferences and xylose metabolism of a mammal pollinator, the Namaqua rock mouse (Aethomys namaquensis). Physiol Biochem Zool 72(4):438–444. https://doi.org/10.1086/316685

    Article  CAS  PubMed  Google Scholar 

  29. Zimmer JP, Lewis SM, Moyer JL (1993) Comparison of gavage, water bottle, and a high-moisture diet bolus as dosing methods for quantitative D-xylose administration to B6D2F1 (Mus musculus) mice. Lab Anim 27(2):164–170. https://doi.org/10.1258/002367793780810423

    Article  CAS  PubMed  Google Scholar 

  30. Robinson CP, Yamachika S, Bounous DI, Brayer J, Jonsson R, Holmdahl R, Peck AB, Humphreys-Beher MG (1998) A novel NOD-derived murine model of primary Sjogren’s syndrome. Arthritis Rheum 41(1):150–156. https://doi.org/10.1002/1529-0131(199801)41:1<150::AID-ART18>3.0.CO;2-T

    Article  CAS  PubMed  Google Scholar 

  31. Rice BW, Cable MD, Nelson MB (2001) In vivo imaging of light-emitting probes. J Biomed Opt 6(4):432–440. https://doi.org/10.1117/1.1413210

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an NIH/NIDCR grant R35DE0282252 to J.M. and NIH/NIDCR grants R01DE021726 and R56DE021726 to J.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Merritt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kreth, J., Abdelrahman, Y.M., Merritt, J. (2020). Multiplex Imaging of Polymicrobial Communities—Murine Models to Study Oral Microbiome Interactions. In: Ripp, S. (eds) Bioluminescent Imaging. Methods in Molecular Biology, vol 2081. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9940-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9940-8_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9939-2

  • Online ISBN: 978-1-4939-9940-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics