Skip to main content

Genetically Engineered Plasma Membrane Nanovesicles for Cancer-Targeted Nanotheranostics

  • Protocol
  • First Online:
Theranostics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2054))

Abstract

A series of ligand-targeted nanosystems have been rapidly exploited to selectively deliver drug molecules to desired cell populations. The conjugation of protein ligands to the nanoparticle (NP) surface endows nanovehicles with active targeting properties. However, the nonspecific covalent coupling of protein ligands to nanocarriers may compromise the protein targeting due to the uncontrolled ligand orientation as well as the decline in ligand activity during linkage process. With this regard, biomimetic synthetic strategies are employed for the preparation of genetically engineered nanovesicles (GNV) from cellular plasma membrane with targeting moieties on the surface in a ligand-oriented manner. Herein, we introduce the biomimetic synthetic strategy and procedures for GNV preparation. This chapter may guide readers to design analogous NPs for cell-specific targeting by displaying particular protein probes (e.g., antibody, nanobody, and single-chain antibody) on the surface of GNVs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chu C, Lin H, Liu H, Wang X, Wang J, Zhang P et al (2017) Tumor microenvironment-triggered supramolecular system as an in situ nanotheranostic generator for cancer phototherapy. Adv Mater 29:1605928

    Article  Google Scholar 

  2. Zhang L, Gao S, Zhang F, Yang K, Ma Q, Zhu L (2014) Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy. ACS Nano 8:12250–12258

    Article  CAS  Google Scholar 

  3. Cai W, Gao H, Chu C, Wang X, Wang J, Zhang P et al (2017) Engineering photo-theranostic nanoscale metal-organic frameworks for multi-modal imaging-guided cancer therapy. ACS Appl Mater Interfaces 9:2040–2051

    Article  CAS  Google Scholar 

  4. Topete A, Alatorre-Meda M, Iglesias P, Villar-Alvarez EM, Barbosa S, Costoya JA et al (2014) Fluorescent drug-loaded, polymeric-based, branched gold nanoshells for localized multimodal therapy and imaging of tumoral cells. ACS Nano 8:2725–2738

    Article  CAS  Google Scholar 

  5. Lin G, Zhang Y, Zhu C, Chu C, Shi Y, Pang X et al (2018) Photo-excitable hybrid nanocomposites for image-guided photo/TRAIL synergistic cancer therapy. Biomaterials 176:60–70

    Article  CAS  Google Scholar 

  6. Wang J, Tao W, Chen X, Farokhzad OC, Liu G (2017) Emerging advances in nanotheranostics with intelligent bioresponsive systems. Theranostics 7:3915–3919

    Article  CAS  Google Scholar 

  7. Ying M, Zhan C, Wang S, Yao B, Hu X, Song X et al (2016) Liposome-based systemic glioma-targeted drug delivery enabled by all-d peptides. ACS Appl Mater Interfaces 8:29977–29985

    Article  CAS  Google Scholar 

  8. Mikhaylov G, Mikac U, Magaeva AA, Itin VI, Naiden EP, Psakhye I et al (2011) Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotechnol 6:594–602

    Article  CAS  Google Scholar 

  9. Lin G, Mi P, Chu C, Zhang J, Liu G (2016) Inorganic nanocarriers overcoming multidrug resistance for cancer theranostics. Adv Sci 3:1600134

    Article  Google Scholar 

  10. Zhang P, Zhang L, Qin Z, Hua S, Guo Z, Chu C et al (2018) Genetically engineered liposome-like nanovesicles as active targeted transport platform. Adv Mater 30:1705350

    Article  Google Scholar 

  11. Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B (2014) Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol 32:32–45

    Article  CAS  Google Scholar 

  12. Mazzucchelli S, Colombo M, Verderio P, Rozek E, Andreata F, Galbiati E et al (2013) Orientation-controlled conjugation of haloalkane dehalogenase fused homing peptides to multifunctional nanoparticles for the specific recognition of cancer cells. Angew Chem Int Ed Engl 52:3121–3125

    Article  CAS  Google Scholar 

  13. Zhang P, Liu G, Chen X (2017) Nanobiotechnology: cell membrane-based delivery systems. Nano Today 13:7–9

    Article  CAS  Google Scholar 

  14. Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY, Park J et al (2013) Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 7:7698–7710

    Article  CAS  Google Scholar 

  15. Zhang P, Chen Y, Zeng Y, Shen C, Li R, Guo Z et al (2015) Virus-mimetic nanovesicles as a versatile antigen-delivery system. Proc Natl Acad Sci U S A 112:E6129–E6138

    Article  CAS  Google Scholar 

  16. Somiya M, Kuroda S (2015) Development of a virus-mimicking nanocarrier for drug delivery systems: the bio-nanocapsule. Adv Drug Deliv Rev 95:77–89

    Article  CAS  Google Scholar 

  17. Wang D, Dong H, Li M, Cao Y, Yang F, Zhang K et al (2018) Erythrocyte-cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano 12:5241–5252

    Article  CAS  Google Scholar 

  18. Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L (2011) Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A 108:10980–10985

    Article  CAS  Google Scholar 

  19. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247

    Article  CAS  Google Scholar 

  20. Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C et al (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7:297–303

    Article  CAS  Google Scholar 

  21. Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579

    Article  CAS  Google Scholar 

  22. Yoo JW, Irvine DJ, Discher DE, Mitragotri S (2011) Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov 10:521–535

    Article  CAS  Google Scholar 

  23. Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ (2006) Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 27:4661–4670

    Article  CAS  Google Scholar 

  24. Mantion A, Graf P, Florea I, Haase A, Thunemann AF, Masic A et al (2011) Biomimetic synthesis of chiral erbium-doped silver/peptide/silica core-shell nanoparticles (ESPN). Nanoscale 3:5168–5179

    Article  CAS  Google Scholar 

  25. Zhao L, Wang J, Lv P, Liu G (2018) Biomimetic synthesis of nanovesicles for targeted drug delivery. Sci Bull 63:663–665

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81371596, 81422023, 51273165, U1705281, and U1505221), the Major State Basic Research Development Program of China (Grant Nos. 2017YFA0205201 and 2018YFA0107301), the Program for New Century Excellent Talents in University (NCET-13-0502), and the Fundamental Research Funds for the Central Universities, China (20720150141 and 20720150206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, P., Chen, H., Liu, J., Liu, G. (2019). Genetically Engineered Plasma Membrane Nanovesicles for Cancer-Targeted Nanotheranostics. In: Batra, J., Srinivasan, S. (eds) Theranostics. Methods in Molecular Biology, vol 2054. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9769-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9769-5_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9768-8

  • Online ISBN: 978-1-4939-9769-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics