Skip to main content

Natural Gas Power

  • Reference work entry
  • First Online:
Fossil Energy
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media, LLC,

Glossary

Brayton cycle:

The thermodynamic cycle describing the operation of a gas turbine. In a combined cycle, it is the topping cycle due to its relative position vis-à-vis Rankine cycle on a temperature-entropy surface.

Carnot cycle:

Also known as the Carnot engine, it is the embodiment of the second law of thermodynamics in the form of a theoretical cycle comprising two isentropic and two isothermal processes. No heat engine operating in a thermodynamic cycle can be more efficient than the corresponding Carnot engine defined by the constant mean-effective heat addition and heat rejection temperatures.

Cogeneration:

See Combined Heat and Power (CHP).

Combined cycle power plant:

A fossil-fired power plant that combines two types of prime movers, usually one or more gas turbines and one or more steam turbines, whose operation is governed by their respective thermodynamic cycles, i.e., Brayton and Rankine.

Combined heat and power (CHP):

The term used for fossil-fired power plants,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Energy Information Administration (EIA) (2009) Annual Energy Review 2008. http://www.eia.doe.gov/aer

  2. United States Environmental Protection Agency (EPA). Methane. www.epa.gov/methane

  3. Liss WH, Thrasher WR (1992) Gas Technology Institute, variability of natural gas composition in select major metropolitan areas of the United States. GRI-92/013

    Google Scholar 

  4. Energy Information Administration (EIA) (2008) International Energy Outlook 2008. DOE/EIA-0484(2008). www.eia.doe.gov/oiaf/ieo/index.html

  5. Natural gas and the environment, from http://www.naturalgas.org/environment/naturalgas.asp

  6. Turbomachinery International 49(6). 10/2008, Handbook 2009

    Google Scholar 

  7. Wärtsilä 50DF generating set, from www.wartsila.com

  8. Khan BH (2006) Non-conventional energy sources. Tata McGraw Hill Publishing Co. Ltd., New Delhi

    Google Scholar 

  9. McNeely M (2006) Power generation order survey. Diesel & Gas Turbine Worldwide, Article from Oct 2006 issue

    Google Scholar 

  10. Burt B, Mullins S (2010) U.S. gas-fired power development: last man standing. Power, Sept 2010, pp 71–73. http://www.powermag.com

  11. Wilson DG, Korakianitis T (1998) The design of high efficiency turbomachinery and gas turbines, 2nd edn. Prentice-Hall, Uppersaddle River

    Google Scholar 

  12. Von Ohain H (1996) Foreword in elements of gas turbine propulsion. In: Mattingly JD (ed). Tata McGraw Hill Edition 2005

    Google Scholar 

  13. Meher-Homji CB (1997) The development of the Junkers Jumo 004B – the world’s first production turbojet. J Eng Gas Turbines Power 119:783

    Article  Google Scholar 

  14. Meher-Homji CB (1998) The development of the whittle turbojet. J Eng Gas Turbines Power 120:249

    Article  Google Scholar 

  15. Meher-Homji CB (2000) Pioneering turbojet developments of Dr. Hans von Ohain – from the HeS 1 to the HES 011. J Eng Gas Turbines Power 122:191

    Article  Google Scholar 

  16. Soares C (2006) Gas turbines in simple cycle and combined cycle applications, Section 1.1 in the gas turbine handbook. US DOE, Office of Fossil Energy, NETL

    Google Scholar 

  17. Volker L (1999) Development of the Siemens gas turbine and technology highlights. Siemens Power Generation, Erlangen

    Google Scholar 

  18. Miller H, Nemec T (2006) Gas turbines, Chapter 24. In: Kutz M (ed) Mechanical engineers’ handbook, Energy and Power, 3rd edn. Wiley, Hoboken

    Google Scholar 

  19. Brandt D (2007) A brief history of GE energy product lines. General Electric Company, Schenectady

    Google Scholar 

  20. Brandt D (1988) The design and development of an advanced heavy-duty gas turbine. J Eng Gas Turbines Power 110:243–250

    Article  Google Scholar 

  21. Eckardt D (2013) Gas turbine powerhouse. De Gruyter Oldenbourg

    Google Scholar 

  22. Stodola A (1927) Steam & gas turbines, authorized translation from the 6th German edition by L. C. Löwenstein. McGraw-Hill Book Company, New York

    Google Scholar 

  23. Langston LS (2010) World’s first gas turbine power plant. ASME Mech Eng 132(4):51

    Article  Google Scholar 

  24. Tomlinson LO, Lee DT. Combined cycles, Chapter 7. In: Sawyer JW, PE, Japikse D (eds) Sawyer’s gas turbine engineering handbook

    Google Scholar 

  25. Horlock JH (1994) Combined cycle power plants – past, present, and future. J Eng Gas Turbines Power 117:608–616

    Article  Google Scholar 

  26. Gebhardt E (2000) The F technology experience story. GER-3950C. http://www.gepower.com/

  27. Elliott TC, Editors of POWER Magazine (eds) (1989) Standard handbook of power plant engineering, Chapter 2.4. In: Haselbacher H (ed) Gas turbine fundamentals. McGraw-Hill

    Google Scholar 

  28. Horlock JH (1997) Aero-engine derivative gas turbines for power generation: Thermodynamic and economic perspectives. J Eng Gas Turbines Power 119:119–123

    Article  Google Scholar 

  29. Cohen H, Rogers GFC, Saravanamuttoo HIH (1987) Gas turbine theory, 3rd edn. Longman Group UK Limited, Cambridge

    Google Scholar 

  30. Cumpsty N (2003) Jet propulsion, 2nd edn. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  31. Schilke PW (2004) Advanced gas turbine materials and coatings GER-3569G. www.gepower.com

  32. Pritchard JE (2003) H-System™ technology update, GT2003-38711, ASME turbo expo – power for land, sea & air, Atlanta, 16–19 June 2003

    Google Scholar 

  33. Koeneke C (2006) Steam cooling of large frame gas turbines one decade in operation. VDI-Berichte 1965:33–42

    Google Scholar 

  34. Imwinkelried B (1995) Advanced cycle system gas turbines GT24/GT26: the highly efficient gas turbines for power generation. In: Proceedings of the 21st international congress on combustion engines, CIMAC 1995, Interlaken

    Google Scholar 

  35. Chiesa P, Macchi E (2004) A thermodynamic analysis of different options to break 60% electric efficiency in CC power plants. J Eng Gas Turbines Power 126:770–785

    Article  Google Scholar 

  36. Holland MJ, Thake TF (1980) Rotor blade cooling in high pressure turbines. J Aircr 17:412–418

    Article  Google Scholar 

  37. Elmasri MA, Pourkey F (1986) Prediction of cooling flow requirements for advanced utility gas turbines part 1: analysis and scaling of the effectiveness curve, 86-WA/HT-43, ASME winter annual meeting, Anaheim, 7–12 Dec 1986

    Google Scholar 

  38. Elmasri MA (1986) Prediction of cooling flow requirements for advanced utility gas turbines part 2: influence of ceramic thermal barrier coatings, ASME winter annual meeting, Anaheim, 7–12 Dec 1986

    Google Scholar 

  39. Elmasri MA (1985) On thermodynamics of gas turbine cycles part 1 – second law analysis of combined cycles. J Eng Gas Turbines Power 107:880–889

    Article  Google Scholar 

  40. Elmasri MA (1986) On thermodynamics of gas turbine cycles: part 2 – a model for expansion in cooled turbines. J Eng Gas Turbines Power 108:151–159

    Article  Google Scholar 

  41. Elmasri MA (1986) On thermodynamics of gas turbine cycles: part 3 – thermodynamic potential and limitations of cooled reheat gas turbine combined cycles. J Eng Gas Turbines Power 108:160–170

    Article  Google Scholar 

  42. Horlock JH, Watson DT, Jones TV (2001) Limitations on gas turbine performance imposed by large turbine cooling flows. J Eng Gas Turbines Power 123:487–494

    Article  Google Scholar 

  43. Horlock JH (2001) The basic thermodynamics of turbine cooling. J Eng Gas Turbines Power 123:583–591

    Article  Google Scholar 

  44. Wilcock RC, Young JB, Horlock JH (2005) The effect of turbine blade cooling on the cycle efficiency of gas turbine power cycles. J Eng Gas Turbines Power 127:109–120

    Article  Google Scholar 

  45. Young JB, Wilcock RC (2002) Modeling the air-cooled gas turbine: parts 1 and 2. J Turbomach 124:207–222

    Article  Google Scholar 

  46. Gülen SC (2010) A simple mathematical model for cooled gas turbines, GT2010-22160, ASME turbo expo – power for land, sea & air, Glasgow, 14–18 June 2010

    Google Scholar 

  47. Rice IG (1995) Steam-injected gas turbine analysis: steam rates. J Eng Gas Turbines Power 117:347–353

    Article  Google Scholar 

  48. Cheng DY, Nelson ALC (2002) The chronological development of the Cheng cycle steam injected gas turbine during the past 25 years. ASME international – IGTI turbo expo 2002, GT2002-30119

    Google Scholar 

  49. Rao A (1989) Process for producing power. US Patent 4,289,763

    Google Scholar 

  50. Adelman ST, Hoffman MA, Baughn JW A methane-steam reformer for a basic chemically recuperated gas turbine. J Eng Gas Turbines Power 117:16–23

    Article  Google Scholar 

  51. McDonald CF, Boland CR (1981) The nuclear closed-cycle gas turbine (HTGR-GT) – dry cooled commercial power plant studies. J Eng Gas Turbines Power 103:89–100

    Article  Google Scholar 

  52. Reale MJ (2004) New high efficiency simple cycle gas turbine – GE’s LMS100™, GER-4222A. www.gepower.com

  53. Mercury 50, Recuperated gas turbine generator set, Solar® Turbines. www.solarturbines.com

  54. Cox JC, Hutchinson D, Oswald JI (1995) The Westinghouse/Rolls Royce WR-21 gas turbine variable area power turbine design. ASME paper 95-GT-54, international gas turbine and aeroengine congress and exposition, Houston, 5–8 June 1995

    Google Scholar 

  55. Hofer DC, Gülen SC (2006) Efficiency entitlement for bottoming cycles, GT2006-91213. ASME turbo expo – power for land, sea & air, Barcelona, 8–11 May 2006

    Google Scholar 

  56. Moran MJ, Shapiro HN (1988) Fundamentals of engineering thermodynamics. Wiley, New York

    Google Scholar 

  57. Gülen SC, Smith RW (2008) Second law efficiency of the Rankine bottoming cycle of a combined cycle power plant. ASME Paper GT2008 -51381, ASME Turbo Expo 2008, Berlin, 9–13 June 2008

    Google Scholar 

  58. Bohn D (2006) SFB 561: aiming for 65% CC efficiency with an air-cooled GT. Modern power systems, pp 26–29

    Google Scholar 

  59. Mutassim Z (2008) New gas turbine materials. Turbomachinery international, Sept/Oct 2008 issue, pp 38–42

    Google Scholar 

  60. Bohn D, Dilthey U, Schubert F (2004) Innovative Technologien für ein GuD-Kraftwerk mit 65% Wirkungsgrad. VDI-Berichte 1857:13–25

    Google Scholar 

  61. Rao AD, Robson FL, Geisbrecht RA (2002) Power plant system configurations for the 21st century, ASME turbo expo 2002, Amsterdam, 3–7 June 2002

    Google Scholar 

  62. Lundberg WL, Veyo SE, Moeckel MD (2003) A high efficiency solid oxide fuel cell hybrid power system using the Mercury 50 advanced turbine system gas turbine. ASME J Eng Gas Turbines Power 125:51–58

    Article  Google Scholar 

  63. Massardo AF, Lubelli F (2000) Internal reforming solid oxide fuel cell – gas turbine combine cycles (IRSOFC-GT); part I: cell model and cycle thermodynamic analysis. ASME J Eng Gas Turbines Power 122:27–35

    Article  Google Scholar 

  64. Massardo AF, Magistri L (2003) Internal reforming solid oxide fuel cell – gas turbine combine cycles (IRSOFC-GT); part II: exergy and thermoeconomic analyses. ASME J Eng Gas Turbines Power 125:67–74

    Article  Google Scholar 

  65. Gülen SC (2015) Étude on gas turbine combined cycle power plant – next 20 years. J Eng Gas Turbines Power 138:#051701

    Google Scholar 

  66. Gülen SC, Jones CJ (2011) GE’s next generation CCGT plants: operational flexibility is the key. Modern Power Systems, June 2011, pp 16–18. www.modernpowersystems.com

  67. Gülen SC (2013) Gas turbine combined cycle fast start: the physics behind the concept. Power Engineering, June 2013, pp 40–49. www.power-eng.com

  68. Chase DL, Kehoe PT (2000) GE combined-cycle product line and performance. GER-3574g, GE Energy

    Google Scholar 

  69. Maslak CE, Tomlinson LO (1994) GE combined-cycle experience. GER-3651. http://www.gepower.com

  70. Tomlinson LO, McCullough S (1996) Single-shaft combined -cycle power generation system. GER-3767c. http://www.gepower.com

  71. Matta RK, Mercer GD, Tuthill RS (2000) Power systems for the 21st century – H GT combined-cycles. GER-3935B, GE Energy

    Google Scholar 

  72. Smith RW, Polukort P, Maslak CE, Jones CM, Gardiner BD (2001) Advanced technology combined cycles. GER-3936a, GE Power Systems

    Google Scholar 

  73. Gülen SC (2013) Performance entitlement of supercritical steam bottoming cycle. J Eng Gas Turbines Power 135:#124501

    Google Scholar 

  74. European Association for the Promotion of Cogeneration (2001) A guide to cogeneration

    Google Scholar 

  75. Phylipsen GJM, Blok K, Worrell E (1998) Handbook on international comparisons of energy efficiency in the manufacturing industry. Department of Science, Technology and Society, Utrecht University, The Netherlands

    Google Scholar 

  76. Gülen SC (2010) A proposed definition of CHP efficiency, Power, June 2010, pp 58–63. http://www.powermag.com

  77. Energy Information Administration (EIA) (2010) Electric power annual. http://www.eia.doe.gov/fuelelectric.html

  78. Davis LB, Black SH (2000) Dry low NOx combustion systems for GE heavy-duty gas turbines. GER-3568g. http://www.gepower.com

  79. Lefebvre AH (1995) The role of fuel preparation in low-emission combustion. J Eng Gas Turbines Power 117:617

    Article  Google Scholar 

  80. Roointon P, Moore GD (2001) Gas turbine emissions and control. GER-4211. http://www.gepower.com

  81. Hilt MB, Waslo J (1984) Evolution of NOx abatement techniques through combustor design for heavy-duty gas turbines. J Eng Gas Turbines Power 106:825

    Article  Google Scholar 

  82. Touchton GL (1984) An experimentally verified NOx prediction algorithm incorporating the effects of steam injection. J Eng Gas Turbines Power 106:833

    Article  Google Scholar 

  83. Davi MA (1994) GE gas turbine combustion flexibility. GER-3946, GE energy

    Google Scholar 

  84. Miller HE (1994) Development of the GE quiet combustor and other design changes to benefit quality GER-3551. http://www.gepower.com

  85. Kehlhofer R, Warner J, Nielsen H, Bachmann R (1999) Combined cycle gas & steam turbine power plants, 2nd edn. PennWell Corp., Tulsa

    Google Scholar 

  86. Peters MS, Timmerhaus KD, West RE (2004) Plant design and economics for chemical engineers, 5th edn. McGraw-Hill, Boston

    Google Scholar 

  87. Bejan A, Tsatsaronis G, Moran M (1996) Thermal design & optimization. Wiley, New York

    MATH  Google Scholar 

  88. Energy and Environmental Economics (2014) Capital cost review of generation technologies. Energy and Environmental Economics, San Francisco. www.ethree.com

  89. Gülen SC, Mazumder I (2013) An expanded cost of electricity model for highly flexible power plants. J Eng Gas Turbines Power 136:#011601

    Google Scholar 

  90. Gülen SC (2011) A more accurate way to calculate the cost of electricity. Power, June 2011, pp 62–65

    Google Scholar 

  91. As reported in the press per Potential Gas Committee report, Potential supply of natural gas in the United States (31 Dec 2008), Potential Gas Agency, Colorado School of Mines, Golden 80401–81887

    Google Scholar 

  92. Gambini M, Vellini M (2003) CO2 emission abatement from fossil fuel power plants by exhaust gas treatment. J Eng Gas Turbines Power 125:365–373

    Article  Google Scholar 

  93. Wagman D (2010) Can natural gas displace coal? Power Eng (issue):4

    Google Scholar 

  94. The future of natural gas – an interdisciplinary MIT study, Interim report by MIT energy initiative, ISBN (978-0-9828008-0-5), 2010, Massachusetts Institute of Technology, Boston

    Google Scholar 

  95. Robb D (2010) CCGT: breaking the 60 percent efficiency barrier. Power Eng Int 18(Issue 3). www.peimagazine.com

  96. Review of status of advanced materials for power generation, technology status report, cleaner coal technology programme, Department of Trade and Industry, London

    Google Scholar 

  97. Tukagoshi K, Muyama A, Uchida S et al (2005) Latest technology for large capacity gas turbine. MHI Tech Rev 42(3):1–5

    Google Scholar 

  98. ElKady AM, Evulet A, Brand A (2009) Application of exhaust gas recirculation in a DLN F-class combustion system for postcombustion carbon capture. J Eng GTs Power 131:#034505

    Google Scholar 

  99. Kailasanath K (2000) Review of propulsion applications of detonation waves. AIAA J 38(9):1698–1708

    Article  Google Scholar 

  100. Goldmeer J, Tangirala V, Dean A (2008) System-level performance estimation of a pulse detonation based hybrid engine. J Eng Gas Turbines Power 130:#011201

    Google Scholar 

  101. Tangirala VE, Rasheed A, Dean AJ (2007) Performance of a pulse detonation combustor-based hybrid engine, GT2007-28056, ASME turbo expo – power for land, sea & air, Montreal, 14–18 June 2007

    Google Scholar 

  102. Gülen SC (2010) Gas turbine with constant volume heat addition, ESDA2010-24817, ASME 2010 10th Biennial conference on engineering systems design and analysis, Istanbul, 12–14 July 2010

    Google Scholar 

  103. Bhargava R, Bianchi M, Campanari S et al (2010) A parametric thermodynamic evaluation of high performance gas turbine based power cycles. J Eng Gas Turbines Power 132:#022001

    Google Scholar 

  104. Lynch M (2016) The confusion about natural gas prices, Forbes Blog, 23 May 2016

    Google Scholar 

Books and Reviews

  1. Bejan A (2006) Advanced engineering thermodynamics, 3rd edn. Wiley, New Jersey

    Google Scholar 

  2. Boss M (1996) Steam turbines for STAG™ combined cycle power systems. GER-3582E. http://www.gepower.com

  3. Chase D (2001) Combined cycle development evolution and future. GER-4206. http://www.gepower.com

  4. Colegrove D, Mason P, Retzlaff K, Cornell D (2001) Structured steam turbines for the combined cycle market GER-4201. http://www.gepower.com

  5. Constant EW II (1980) The origins of the turbojet revolution. The Johns Hopkins University Press, Baltimore/London

    Google Scholar 

  6. Cotton KC (1998) Evaluating and improving steam turbine performance, 2nd edn. Cotton Fact, Rexford

    Google Scholar 

  7. Denton JD (1993) Loss mechanisms in turbomachines, the 1993 IGTI scholar lecture. J Turbomach 115:621–656

    Article  Google Scholar 

  8. Dunn MG (2001) Convective heat transfer and aerodynamics in axial flow turbines. J Eng Gas Turbines Power 123:637–686

    Google Scholar 

  9. Elmasri MA (2007) Design of gas turbine combined cycle and cogeneration systems – theory, practice and optimization. Seminar Notes, Thermoflow, Sudbury. info@thermoflow.com

  10. Han JC, Dutta S, Ekkad SV (2000) Gas turbine heat transfer and cooling technology. Taylor & Francis, New York

    Google Scholar 

  11. Horlock JH (2001) Combined power plants: including combined cycle gas turbine (CCGT) plants. Krieger Publishing Company, Malabar

    Google Scholar 

  12. Kehlhofer R, Hannemann F, Stirnimann F, Rukes B (2009) Combined cycle gas & steam turbine power plants, 3rd edn. PennWell Corp, Tulsa

    Google Scholar 

  13. Lakshminarayana B (1996) Fluid dynamics and heat transfer of turbomachinery. Wiley, New York

    Google Scholar 

  14. Lefebvre AH, Ballal DR (2010) Gas turbine combustion: alternative fuels and emissions, 3rd edn. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  15. Boyce MP (2006) Gas turbine engineering handbook, 3rd edn. Gulf Professional Publishing, Houston

    Google Scholar 

  16. Nag PK (2006) Power plant engineering, 2nd edn. Tata McGraw-Hill Publishing Co. Ltd., New Delhi

    Google Scholar 

  17. Saravanamuttoo HIH, Rogers GFC, Cohen H, Straznicky PV (2009) Gas turbine theory, 6th edn. Pearson Prentice Hall

    Google Scholar 

  18. Traupel W (1977) Thermische Turbomaschinen, Erster Band, Thermodynamisch-strömungstechnische Berechnung, 3rd edn, neuarbeitete und erweiterte Auflage. Springer, Berlin/Heidelberg/New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raub W. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Smith, R.W., Gülen, S.C. (2020). Natural Gas Power. In: Malhotra, R. (eds) Fossil Energy. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9763-3_100

Download citation

Publish with us

Policies and ethics