Skip to main content

Exploring the Scoring Function Space

  • Protocol
  • First Online:
Docking Screens for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2053))

Abstract

In the analysis of protein-ligand interactions, two abstractions have been widely employed to build a systematic approach to analyze these complexes: protein and chemical spaces. The pioneering idea of the protein space dates back to 1970, and the chemical space is newer, later 1990s. With the progress of computational methodologies to create machine-learning models to predict the ligand-binding affinity, clearly there is a need for novel approaches to the problem of protein-ligand interactions. New abstractions are required to guide the conceptual analysis of the molecular recognition problem. Using a systems approach, we proposed to address protein-ligand scoring functions using the modern idea of the scoring function space. In this chapter, we describe the fundamental concept behind the scoring function space and how it has been applied to develop the new generation of targeted-scoring functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xavier MM, Heck GS, de Avila MB, Levin NM, Pintro VO, Carvalho NL et al (2016) SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions. Comb Chem High Throughput Screen 19:801–812

    Article  CAS  PubMed  Google Scholar 

  2. de Ávila MB, Xavier MM, Pintro VO, de Azevedo WF (2017) Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2. Biochem Biophys Res Commun 494:305–310

    Article  PubMed  Google Scholar 

  3. Azevedo LS, Moraes FP, Xavier MM, Pantoja EO, Villavicencio B, Finck JÁ et al (2012) Recent progress of molecular docking simulations applied to development of drugs. Curr Bioinforma 7:352–365

    Article  CAS  Google Scholar 

  4. Bitencourt-Ferreira G, de Azevedo WF Jr (2018) Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes. Biophys Chem 240:63–69

    Article  CAS  PubMed  Google Scholar 

  5. Jiménez J, Škalič M, Martínez-Rosell G, De Fabritiis G (2018) KDEEP: protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks. J Chem Inf Model 58:287–296

    Article  PubMed  Google Scholar 

  6. de Ávila MB, de Azevedo WF Jr (2018) Development of machine learning models to predict inhibition of 3-dehydroquinate dehydratase. Chem Biol Drug Des 92:1468–1474

    Article  PubMed  Google Scholar 

  7. Amaral MEA, Nery LR, Leite CE, de Azevedo Junior WF, Campos MM (2018) Pre-clinical effects of metformin and aspirin on the cell lines of different breast cancer subtypes. Investig New Drugs 36:782–796

    Article  CAS  Google Scholar 

  8. Levin NMB, Pintro VO, Bitencourt-Ferreira G, Mattos BB, Silvério AC, de Azevedo WF Jr (2018) Development of CDK-targeted scoring functions for prediction of binding affinity. Biophys Chem 235:1–8

    Article  CAS  PubMed  Google Scholar 

  9. Freitas PG, Elias TC, Pinto IA, Costa LT, de Carvalho PVSD, Omote DQ et al (2018) Computational approach to the discovery of phytochemical molecules with therapeutic potential targets to the PKCZ protein. Lett Drug Des Discov 15:488–499

    Article  CAS  Google Scholar 

  10. Pintro VO, Azevedo WF (2017) Optimized virtual screening workflow. Towards target-based polynomial scoring functions for HIV-1 protease. Comb Chem High Throughput Screen 20:820–827

    Article  CAS  PubMed  Google Scholar 

  11. de Ávila MB, Bitencourt-Ferreira G, de Azevedo WF Jr (2019) Structural basis for inhibition of enoyl-[acyl carrier protein] reductase (InhA) from Mycobacterium tuberculosis. Curr Med Chem. https://doi.org/10.2174/0929867326666181203125229

  12. Volkart PA, Bitencourt-Ferreira G, Souto AA, de Azevedo WF (2019) Cyclin-dependent kinase 2 in cellular senescence and cancer. A structural and functional review. Curr Drug Targets 20(7):716–726. https://doi.org/10.2174/1389450120666181204165344

    Article  CAS  PubMed  Google Scholar 

  13. Russo S, De Azevedo WF (2019) Advances in the understanding of the cannabinoid receptor 1 - focusing on the inverse agonists interactions. Curr Med Chem. https://doi.org/10.2174/0929867325666180417165247

    Article  PubMed  Google Scholar 

  14. Heck GS, Pintro VO, Pereira RR, de Ávila MB, Levin NMB, de Azevedo WF (2017) Supervised machine learning methods applied to predict ligand-binding affinity. Curr Med Chem 24:2459–2470

    Article  CAS  PubMed  Google Scholar 

  15. Smith JM (1970) Natural selection and the concept of a protein space. Nature 225:563–564

    Article  CAS  PubMed  Google Scholar 

  16. Hou J, Jun SR, Zhang C, Kim SH (2005) Global mapping of the protein structure space and application in structure-based inference of protein function. Proc Natl Acad Sci U S A 102:3651–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev 16:3–50

    Article  CAS  PubMed  Google Scholar 

  18. Dobson CM (2004) Chemical space and biology. Nature 432:824–828

    Article  CAS  PubMed  Google Scholar 

  19. Kirkpatrick P, Ellis C (2004) Chemical space. Nature 432:823

    Article  CAS  Google Scholar 

  20. Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432:855–861

    Article  CAS  PubMed  Google Scholar 

  21. Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432:862–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stockwell BR (2004) Exploring biology with small organic molecules. Nature 432:846–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dias R, Timmers LF, Caceres RA, de Azevedo WF Jr (2008) Evaluation of molecular docking using polynomial empirical scoring functions. Curr Drug Targets 9:1062–1070

    Article  CAS  PubMed  Google Scholar 

  24. de Azevedo WF Jr, Dias R (2008) Evaluation of ligand-binding affinity using polynomial empirical scoring functions. Bioorg Med Chem 16:9378–9382

    Article  PubMed  Google Scholar 

  25. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49:3315–3321

    Article  CAS  PubMed  Google Scholar 

  26. Heberlé G, de Azevedo WF Jr (2011) Bio-inspired algorithms applied to molecular docking simulations. Curr Med Chem 18:1339–1352

    Article  PubMed  Google Scholar 

  27. De Azevedo WF Jr (2010) MolDock applied to structure-based virtual screening. Curr Drug Targets 11:327–334

    Article  PubMed  Google Scholar 

  28. Goodsell DS, Olson AJ (1990) Automated docking of substrates to proteins by simulated annealing. Proteins 8:195–202

    Article  CAS  PubMed  Google Scholar 

  29. Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10:293–304

    Article  CAS  PubMed  Google Scholar 

  30. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK et al (1998) Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  31. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zar JH (1972) Significance testing of the Spearman rank correlation coefficient. J Am Stat Assoc 67:578–580

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from CNPq (Brazil) (308883/2014-4). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior—Brasil (CAPES)—Finance Code 001. GB-F acknowledges support from PUCRS/BPA fellowship. WFA is a senior researcher for CNPq (Brazil) (Process Numbers: 308883/2014-4 and 309029/2018-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Filgueira de Azevedo Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bitencourt-Ferreira, G., de Azevedo, W.F. (2019). Exploring the Scoring Function Space. In: de Azevedo Jr., W. (eds) Docking Screens for Drug Discovery. Methods in Molecular Biology, vol 2053. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9752-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9752-7_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9751-0

  • Online ISBN: 978-1-4939-9752-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics