Skip to main content

Molecular Docking Simulations with ArgusLab

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2053))

Abstract

Molecular docking is the major computational technique employed in the early stages of computer-aided drug discovery. The availability of free software to carry out docking simulations of protein-ligand systems has allowed for an increasing number of studies using this technique. Among the available free docking programs, we discuss the use of ArgusLab (http://www.arguslab.com/arguslab.com/ArgusLab.html) for protein-ligand docking simulation. This easy-to-use computational tool makes use of a genetic algorithm as a search algorithm and a fast scoring function that allows users with minimal experience in the simulations of protein-ligand simulations to carry out docking simulations. In this chapter, we present a detailed tutorial to perform docking simulations using ArgusLab.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Filgueira de Azevedo W Jr, dos Santos GC, dos Santos DM, Olivieri JR, Canduri F, Silva RG et al (2003) Docking and small angle X-ray scattering studies of purine nucleoside phosphorylase. Biochem Biophys Res Commun 309:923–928

    CAS  PubMed  Google Scholar 

  2. da Silveira NJ, Arcuri HA, Bonalumi CE, de Souza FP, Mello IM, Rahal P et al (2005) Molecular models of NS3 protease variants of the hepatitis C virus. BMC Struct Biol 5:1

    PubMed  PubMed Central  Google Scholar 

  3. Silveira NJ, Uchôa HB, Pereira JH, Canduri F, Basso LA, Palma MS et al (2005) Molecular models of protein targets from Mycobacterium tuberculosis. J Mol Model 11:160–166

    PubMed  Google Scholar 

  4. da Silveira NJ, Bonalumi CE, Uchõa HB, Pereira JH, Canduri F, de Azevedo WF (2006) DBMODELING: a database applied to the study of protein targets from genome projects. Cell Biochem Biophys 44:366–374

    PubMed  Google Scholar 

  5. da Silveira NJF, Bonalumi CE, Arcuri HA, de Azevedo WF Jr (2007) Molecular modeling databases: a new way in the search of proteins targets for drug development. Curr Bioinforma 2:1–10

    Google Scholar 

  6. Marques MR, Pereira JH, Oliveira JS, Basso LA, de Azevedo WF Jr, Santos DS et al (2007) The inhibition of 5-enolpyruvylshikimate-3-phosphate synthase as a model for development of novel antimicrobials. Curr Drug Targets 8:445–457

    CAS  PubMed  Google Scholar 

  7. Breda A, Basso LA, Santos DS, de Azevedo WF Jr (2008) Virtual screening of drugs: score functions, docking, and drug design. Curr Comput Aided Drug Des 4:265–272

    CAS  Google Scholar 

  8. de Azevedo WF Jr, Dias R (2008) Computational methods for calculation of ligand-binding affinity. Curr Drug Targets 9:1031–1039

    PubMed  Google Scholar 

  9. Dias R, de Azevedo WF Jr (2008) Molecular docking algorithms. Curr Drug Targets 9:1040–1047

    CAS  PubMed  Google Scholar 

  10. Arcuri HA, Zafalon GF, Marucci EA, Bonalumi CE, da Silveira NJ, Machado JM et al (2010) SKPDB: a structural database of shikimate pathway enzymes. BMC Bioinformatics 11:12

    PubMed  PubMed Central  Google Scholar 

  11. De Azevedo WF Jr (2010) MolDock applied to structure-based virtual screening. Curr Drug Targets 11:327–334

    PubMed  Google Scholar 

  12. Ducati RG, Basso LA, Santos DS, de Azevedo WF Jr (2010) Crystallographic and docking studies of purine nucleoside phosphorylase from Mycobacterium tuberculosis. Bioorg Med Chem 18:4769–4774

    CAS  PubMed  Google Scholar 

  13. Heberlé G, de Azevedo WF Jr (2011) Bio-inspired algorithms applied to molecular docking simulations. Curr Med Chem 18:1339–1352

    PubMed  Google Scholar 

  14. Rocha BA, Delatorre P, Oliveira TM, Benevides RG, Pires AF, Sousa AA et al (2011) Structural basis for both pro- and anti-inflammatory response induced by mannose-specific legume lectin from Cymbosema roseum. Biochimie 93:806–816

    CAS  PubMed  Google Scholar 

  15. Vianna CP, de Azevedo WF Jr (2012) Identification of new potential Mycobacterium tuberculosis shikimate kinase inhibitors through molecular docking simulations. J Mol Model 18:755–764

    CAS  PubMed  Google Scholar 

  16. Moraes FP, de Azevedo WF Jr (2012) Targeting imidazoline site on monoamine oxidase B through molecular docking simulations. J Mol Model 18:3877–3886

    CAS  PubMed  Google Scholar 

  17. Azevedo LS, Moraes FP, Xavier MM, Pantoja EO, Villavicencio B, Finck JA et al (2012) Recent progress of molecular docking simulations applied to development of drugs. Curr Bioinforma 7:352–365

    CAS  Google Scholar 

  18. Coracini JD, de Azevedo WF Jr (2014) Shikimate kinase, a protein target for drug design. Curr Med Chem 21:592–604

    CAS  PubMed  Google Scholar 

  19. de Avila MB, de Azevedo WF (2014) Data mining of docking results. Application to 3-dehydroquinate dehydratase. Curr Bioinforma 9:361–379

    Google Scholar 

  20. Teles CB, Moreira-Dill LS, Silva Ade A, Facundo VA, de Azevedo WF Jr, da Silva LH et al (2015) A lupane-triterpene isolated from Combretum leprosum Mart. fruit extracts that interferes with the intracellular development of Leishmania (L.) amazonensis in vitro. BMC Complement Altern Med 15:165

    PubMed  PubMed Central  Google Scholar 

  21. de Azevedo WF Jr (2016) Opinion paper: targeting multiple cyclin-dependent kinases (CDKs): a new strategy for molecular docking studies. Curr Drug Targets 17:2

    PubMed  Google Scholar 

  22. Xavier MM, Heck GS, de Avila MB, Levin NM, Pintro VO, Carvalho NL et al (2016) SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions. Comb Chem High Throughput Screen 19:801–812

    Article  CAS  PubMed  Google Scholar 

  23. Ballante F, Marshall GR (2016) An automated strategy for binding-pose selection and docking assessment in structure-based drug design. J Chem Inf Model 56:54–72

    Article  CAS  PubMed  Google Scholar 

  24. Vieth M, Hirst JD, Kolinski A, Brooks CL III (1998) Assessing energy functions for flexible docking. J Comput Chem 19:1612–1622

    Article  CAS  Google Scholar 

  25. Joy S, Nair PS, Hariharan R, Pillai MR (2006) Detailed comparison of the protein-ligand docking efficiencies of GOLD, a commercial package and ArgusLab, a licensable freeware. In Silico Biol 6:601–605

    CAS  PubMed  Google Scholar 

  26. Sami AJ, Haider MK (2007) Identification of novel catalytic features of endo-beta-1,4-glucanase produced by mulberry longicorn beetle Apriona germari. J Zhejiang Univ Sci B 8:765–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yanamala N, Tirupula KC, Klein-Seetharaman J (2008) Preferential binding of allosteric modulators to active and inactive conformational states of metabotropic glutamate receptors. BMC Bioinformatics 1:16

    Article  Google Scholar 

  28. Naz A, Bano K, Bano F, Ghafoor NA, Akhtar N (2009) Conformational analysis (geometry optimization) of nucleosidic antitumor antibiotic showdomycin by Arguslab 4 software. Pak J Pharm Sci 22:78–82

    CAS  PubMed  Google Scholar 

  29. Singh KD, Muthusamy K (2009) In silico genome analysis and drug efficacy test of influenza A virus (H1N1) 2009. Indian J Microbiol 49:358–364

    Article  CAS  PubMed  Google Scholar 

  30. Duverna R, Ablordeppey SY, Lamango NS (2010) Biochemical and docking analysis of substrate interactions with polyisoprenylated methylated protein methyl esterase. Curr Cancer Drug Targets 10:634–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sridhar GR, Rao AA, Srinivas K, Nirmala G, Lakshmi G, Suryanarayna D et al (2010) Butyrylcholinesterase in metabolic syndrome. Med Hypotheses 75:648–651

    Article  CAS  PubMed  Google Scholar 

  32. Parasuraman S, Raveendran R (2011) Effect of cleistanthin A and B on adrenergic and cholinergic receptors. Pharmacogn Mag 7:243–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Balaji B, Ramanathan M (2012) Prediction of estrogen receptor β ligands potency and selectivity by docking and MM-GBSA scoring methods using three different scaffolds. J Enzyme Inhib Med Chem 27:832–844

    Article  CAS  PubMed  Google Scholar 

  34. Hussain Basha S, Prasad RN (2012) In-silico screening of pleconaril and its novel substituted derivatives with neuraminidase of H1N1 influenza strain. BMC Res Notes 5:105

    Article  PubMed  PubMed Central  Google Scholar 

  35. Elavarasan S, Bhakiaraj D, Chellakili B, Elavarasan T, Gopalakrishnan M (2012) One pot synthesis, structural and spectral analysis of some symmetrical curcumin analogues catalyzed by calcium oxide under microwave irradiation. Spectrochim Acta A Mol Biomol Spectrosc 97:717–721

    Article  CAS  PubMed  Google Scholar 

  36. Sridhar GR, Nageswara Rao PV, Kaladhar DS, Devi TU, Kumar SV (2012) In silico docking of HNF-1a receptor ligands. Adv Bioinforma 2012:705435

    Article  Google Scholar 

  37. Piplani P, Singh P, Sharma A (2013) Synthesis, molecular docking and antiamnesic activity of selected 2-naphthyloxy derivatives. Med Chem 9:371–378

    Article  CAS  PubMed  Google Scholar 

  38. Basha SH, Talluri D, Raminni NP (2013) Computational repositioning of ethno medicine elucidated gB-gH-gL complex as novel anti herpes drug target. BMC Complement Altern Med 13:85

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hafeez A, Naz A, Naeem S, Bano K, Akhtar N (2013) Computational study on the geometry optimization and excited - state properties of riboflavin by ArgusLab 4.0.1. Pak J Pharm Sci 26:487–493

    CAS  PubMed  Google Scholar 

  40. Sardari S, Azadmanesh K, Mahboudi F, Davood A, Vahabpour R, Zabihollahi R et al (2013) Design of small molecules with HIV fusion inhibitory property based on Gp41 interaction assay. Avicenna J Med Biotechnol 5:78–86

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Song Z, Wang J, Yang B (2014) Spectral studies on the interaction between HSSC and apoCopC. Spectrochim Acta A Mol Biomol Spectrosc 118:454–460

    Article  CAS  PubMed  Google Scholar 

  42. Krishnamoorthy M, Balakrishnan R (2014) Docking studies for screening anticancer compounds of Azadirachta indica using Saccharomyces cerevisiae as model system. J Nat Sci Biol Med 5:108–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sahoo BR, Dubey PK, Goyal S, Bhoi GK, Lenka SK, Maharana J et al (2014) Exploration of the binding modes of buffalo PGRP1 receptor complexed with meso-diaminopimelic acid and lysine-type peptidoglycans by molecular dynamics simulation and free energy calculation. Chem Biol Interact 220:255–268

    Article  CAS  PubMed  Google Scholar 

  44. Shaikh RU, Dawane AA, Pawar RP, Gond DS, Meshram RJ et al (2016) Inhibition of Helicobacter pylori and its associate urease by labdane diterpenoids isolated from Andrographis paniculata. Phytother Res 30:412–417

    Article  CAS  PubMed  Google Scholar 

  45. Dash R, Uddin MM, Hosen SM, Rahim ZB, Dinar AM, Kabir MS et al (2015) Molecular docking analysis of known flavonoids as duel COX-2 inhibitors in the context of cancer. Bioinformation 11:543–549

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jahanban-Esfahlan A, Panahi-Azar V (2016) Interaction of glutathione with bovine serum albumin: spectroscopy and molecular docking. Food Chem 202:426–431

    Article  CAS  PubMed  Google Scholar 

  47. Song Z, Yuan W, Zhu R, Wang S, Zhang C, Yang B (2017) Study on the interaction between curcumin and CopC by spectroscopic and docking methods. Int J Biol Macromol 96:192–199

    Article  CAS  PubMed  Google Scholar 

  48. Agrahari AK, GPD C (2017) A computational approach to identify a potential alternative drug with its positive impact toward PMP22. J Cell Biochem 118:3730–3743

    Article  CAS  PubMed  Google Scholar 

  49. Chaudhary NK, Mishra P (2017) Metal complexes of a novel Schiff Base based on penicillin: characterization, molecular modeling, and antibacterial activity study. Bioinorg Chem Appl 2017:6927675

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mohammadi T, Ghayeb Y (2018) Atomic insight into designed carbamate-based derivatives as acetylcholine esterase (AChE) inhibitors: a computational study by multiple molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 36:126–138

    Article  CAS  PubMed  Google Scholar 

  51. Berg S, Bergh M, Hellberg S, Högdin K, Lo-Alfredsson Y, Söderman P et al (2012) Discovery of novel potent and highly selective glycogen synthase kinase-3β (GSK3β) inhibitors for Alzheimer’s disease: design, synthesis, and characterization of pyrazines. J Med Chem 55:9107–9119

    Article  CAS  PubMed  Google Scholar 

  52. Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134

    Article  CAS  PubMed  Google Scholar 

  53. Murray AW (1994) Cyclin-dependent kinases: regulators of the cell cycle and more. Chem Biol 1:191–195

    Article  CAS  PubMed  Google Scholar 

  54. Kim SH, Schulze-Gahmen U, Brandsen J, de Azevedo Junior WF (1996) Structural basis for chemical inhibition of CDK2. Prog Cell Cycle Res 2:137–145

    CAS  PubMed  Google Scholar 

  55. De Azevedo WF Jr, Mueller-Dieckmann HJ, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH (1996) Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc Natl Acad Sci U S A 93:2735–2740

    Article  PubMed  PubMed Central  Google Scholar 

  56. Canduri F, de Azevedo WF Jr (2005) Structural basis for interaction of inhibitors with cyclin-dependent kinase 2. Curr Comput Aided Drug Des 1:53–64

    Article  CAS  Google Scholar 

  57. Krystof V, Cankar P, Frysová I, Slouka J, Kontopidis G, Dzubák P (2006) 4-arylazo-3,5-diamino-1H-pyrazole CDK inhibitors: SAR study, crystal structure in complex with CDK2, selectivity, and cellular effects. J Med Chem 49:6500–6509

    Article  CAS  PubMed  Google Scholar 

  58. Levin NM, Pintro VO, de Ávila MB, de Mattos BB, De Azevedo WF Jr (2017) Understanding the structural basis for inhibition of cyclin-dependent kinases. New pieces in the molecular puzzle. Curr Drug Targets 18:1104–1111

    Article  PubMed  Google Scholar 

  59. de Ávila MB, Xavier MM, Pintro VO, de Azevedo WF (2017) Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2. Biochem Biophys Res Commun 494:305–310

    Article  PubMed  Google Scholar 

  60. Levin NMB, Pintro VO, Bitencourt-Ferreira G, Mattos BB, Silvério AC, de Azevedo WF Jr (2018) Development of CDK-targeted scoring functions for prediction of binding affinity. Biophys Chem 235:1–8

    Article  CAS  PubMed  Google Scholar 

  61. Volkart PA, Bitencourt-Ferreira G, Souto AA, de Azevedo WF (2019) Cyclin-dependent kinase 2 in cellular senescence and cancer. A structural and functional review. Curr Drug Targets 20:716–726. https://doi.org/10.2174/1389450120666181204165344

    Article  CAS  PubMed  Google Scholar 

  62. De Bondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim SH (1993) Crystal structure of cyclin-dependent kinase 2. Nature 363:595–602

    Article  PubMed  Google Scholar 

  63. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K et al (2002) The Protein Data Bank. Acta Crystallogr D Biol Crystallogr 58:899–907

    Article  PubMed  Google Scholar 

  65. Westbrook J, Feng Z, Chen L, Yang H, Berman HM (2003) The Protein Data Bank and structural genomics. Nucleic Acids Res 31:489–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from CNPq (Brazil) (308883/2014-4). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior—Brasil (CAPES)—Finance Code 001. GB-F acknowledges support from PUCRS/BPA fellowship. WFA is a senior researcher for CNPq (Brazil) (Process Numbers: 308883/2014-4 and 309029/2018-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Filgueira de Azevedo Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bitencourt-Ferreira, G., de Azevedo, W.F. (2019). Molecular Docking Simulations with ArgusLab. In: de Azevedo Jr., W. (eds) Docking Screens for Drug Discovery. Methods in Molecular Biology, vol 2053. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9752-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9752-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9751-0

  • Online ISBN: 978-1-4939-9752-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics