Skip to main content

Using RNA Interference for Purinoceptor Knockdown In Vivo

  • Protocol
  • First Online:
Purinergic Signaling

Abstract

RNA interference (RNAi) is a powerful post-transcriptional gene silencing (PTGS) induced by small double-stranded RNA (dsRNA). The method allows silencing of genes of interest by translation inhibition or by mRNA degradation. In this chapter, we provide a brief overview of the mechanisms involved in each step of gene silencing. A nonviral infusion of short siRNA into ventricular system of rats was used to study purinoceptor in the rat brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corey DR (2007) RNA learns from antisense. Nat Chem Biol 3:8–11. https://doi.org/10.1038/nchembio0107-8

    Article  CAS  PubMed  Google Scholar 

  2. Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498. https://doi.org/10.1038/35078107

    Article  CAS  PubMed  Google Scholar 

  3. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811. https://doi.org/10.1038/35888

    Article  CAS  PubMed  Google Scholar 

  4. França NR, Mesquita D Jr, Lima AB et al (2010) Interferência por RNA: uma nova alternativa para terapia nas doenças reumáticas. Rev Bras Reumatol 50:695–702. https://doi.org/10.1590/S0482-50042010000600008

    Article  PubMed  Google Scholar 

  5. Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 75:280–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boudreau RL, Rodríguez-Lebrón E, Davidson BL (2011) RNAi medicine for the brain: progresses and challenges. Hum Mol Genet 20:21–27. https://doi.org/10.1093/hmg/ddr137

    Article  CAS  Google Scholar 

  7. Bagga S, Bracht J, Hunter S et al (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563. https://doi.org/10.1016/j.cell.2005.07.031

    Article  CAS  PubMed  Google Scholar 

  8. Bernstein E, Caudy AA, Hammond SM et al (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366. https://doi.org/10.1038/35053110

    Article  CAS  PubMed  Google Scholar 

  9. Ameres SL, Martinez J, Schroeder R (2007) Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130:101–112. https://doi.org/10.1016/j.cell.2007.04.037

    Article  CAS  PubMed  Google Scholar 

  10. Kim DH, Rossi JJ (2008) RNAi mechanisms and applications. Biotechniques 44:613–616. https://doi.org/10.2144/000112792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meister GM, Landthaler A, Patkaniowska Y et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197. https://doi.org/10.1016/j.molcel.2004.07.007

    Article  CAS  PubMed  Google Scholar 

  12. Rand TA, Ginalski K, Gridhin NV et al (2004) Biochemical identification of argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc Natl Acad Sci U S A 101:14385–14389. https://doi.org/10.1073/pnas.0405913101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rand TA, Petersen S, Du F et al (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123:621–629. https://doi.org/10.1016/j.cell.2005.10.020

    Article  CAS  PubMed  Google Scholar 

  14. Tang G (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30:106–114. https://doi.org/10.1016/j.tibs.2004.12.007

    Article  CAS  PubMed  Google Scholar 

  15. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  CAS  PubMed  Google Scholar 

  16. Schwarz DS, Hutvagner G, Du T et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  CAS  PubMed  Google Scholar 

  17. Jinek M, Doudna JA (2009) A three-dimensional view of the molecular machinery of RNA interference. Nature 457:405–412. https://doi.org/10.1038/nature07755

    Article  CAS  PubMed  Google Scholar 

  18. Fraser AG, Kamath RS, Zipperlen P et al (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408:325–330. https://doi.org/10.1038/35042517

    Article  CAS  PubMed  Google Scholar 

  19. Gönczy P, Echeverri C, Oegema K et al (2000) Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408:331–336. https://doi.org/10.1038/35042526

    Article  PubMed  Google Scholar 

  20. Mccaffrey AP, Kay MA (2002) A story of mice and men. Gene Ther 9:1563. https://doi.org/10.1038/sj.gt.3301890

    Article  CAS  PubMed  Google Scholar 

  21. Dogini DB, Pascoal VD, Avansini SH et al (2014) The new world of RNAs. Genet Mol Biol 37:285–293

    Article  CAS  PubMed  Google Scholar 

  22. Grimm D (2009) Small silencing RNAs: state-of-the-art. Adv Drug Deliv Rev 61:672–703. https://doi.org/10.1016/j.addr.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  23. Pascoal VDB (2010) O papel da interleucina-1 beta na fase aguda do modelo de epilepsia do lobo temporal induzido pela pilocarpina. Dissertação. Universidade Estadual de Campinas, São Paulo

    Google Scholar 

  24. Hartmann R, Justesen J, Sarkar SN et al (2003) Crystal structure of the 2′-specific and double-stranded RNA-activated interferon-induced antiviral protein 2′-5′-oligoadenylate synthetase. Mol Cell 12:1173–1185

    Article  CAS  PubMed  Google Scholar 

  25. Pei Y, Tuschl T (2006) On the art of identifying effective and specific siRNAs. Nat Methods 3(9):670–676. https://doi.org/10.1038/nmeth911

    Article  CAS  PubMed  Google Scholar 

  26. Fedorov Y, Anderson EM, Birmingham A et al (2006) Off-target effects by siRNA can induce toxic phenotype. RNA 12:1188–1196. https://doi.org/10.1261/rna.28106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song E, Zhu P, Lee SK et al (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23:709–717. https://doi.org/10.1038/nbt1101

    Article  CAS  PubMed  Google Scholar 

  28. Hassani Z, Lemkine GF, Erbacher P et al (2005) Lipid-mediated siRNA delivery down-regulates exogenous gene expression in the mouse brain at picomolar levels. J Gene Med 7:198–207. https://doi.org/10.1002/jgm.659

    Article  CAS  PubMed  Google Scholar 

  29. Pardridge WM (2007) Blood–brain barrier delivery. Drug Discov Today 12:54–61. https://doi.org/10.1016/j.drudis.2006.10.013

    Article  CAS  PubMed  Google Scholar 

  30. Boorn JGVD, Schlee M, Coch C et al (2011) SiRNA delivery with exosome nanoparticles. Nat Biotechnol 29:325–326. https://doi.org/10.1038/nbt.1830

    Article  CAS  PubMed  Google Scholar 

  31. Lu M, Xing H, Xun Z et al (2018) Exosome-based small RNA delivery: progress and prospects. Asian J Pharm Sci 13:1–11. https://doi.org/10.1016/j.ajps.2017.07.008

    Article  PubMed  Google Scholar 

  32. Kumar P, Wu H, McBride JL et al (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:39–43. https://doi.org/10.1038/nature05901

    Article  CAS  PubMed  Google Scholar 

  33. Kim SS, Ye C, Kumar P et al (2010) Targeted delivery of siRNA to macrophages for anti-inflammatory treatment. Mol Ther 18:993–1001. https://doi.org/10.1038/mt.2010.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Amorim RP, Araújo MGL, Valero J et al (2017) Silencing of P2X7R by RNA interference in the hippocampus can attenuate morphological and behavioral impact of pilocarpine-induced epilepsy. Purinergic Signal 13:467–478. https://doi.org/10.1007/s11302-017-9573-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Burnstock G (2013) Purinergic mechanisms and pain—an update. Eur J Pharmacol 716:24–40. https://doi.org/10.1016/j.ejphar.2013.01.078

    Article  CAS  PubMed  Google Scholar 

  36. Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7:575–590. https://doi.org/10.1038/nrd2605

    Article  CAS  PubMed  Google Scholar 

  37. Abbracchio MP, Burnstock G, Verkhratsky A et al (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29. https://doi.org/10.1016/j.tins.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  38. Sperlágh B, Illes P (2014) P2X7 receptor: an emerging target in central nervous system diseases. Trends Pharmacol Sci 35:537–547. https://doi.org/10.1016/j.tips.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  39. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082. https://doi.org/10.1038/sj.emboj.7601378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Engel T, Gomez-Villafuertes R, Tanaka K et al (2012) Seizure suppression and neuroprotection by targeting the purinergic P2X7 receptor during status epilepticus in mice. FASEB J 26:1616–1628. https://doi.org/10.1096/fj.11-196089

    Article  CAS  PubMed  Google Scholar 

  41. Xiang Z, Burnstock G (2005) Expression of P2X receptors on rat microglial cells during early development. Glia 52:119–126. https://doi.org/10.1002/glia.20227

    Article  PubMed  Google Scholar 

  42. Sim JA, Young MT, Sung HY et al (2004) Reanalysis of P2X7 receptor expression in rodent brain. J Neurosci 24:6307–6314. https://doi.org/10.1523/JNEUROSCI.1469-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Armstrong JN, Brust TB, Lewis RG et al (2002) Activation of presynaptic P2X7-like receptors depresses mossy fiber-CA3 synaptic transmission through p38 mitogen-activated protein kinase. J Neurosci 22:5938–5945. doi:20026618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sperlágh B, Köfalvi A, Deuchars J et al (2002) Involvement of P2X7 receptors in the regulation of neurotransmitter release in the rat hippocampus. J Neurochem 81(6):1196–1211

    Article  PubMed  Google Scholar 

  45. Di Virgilio F, Ben DD, Sarti AC et al (2017) The P2X7 receptor in infection and inflammation. Immunity 47:15–31. https://doi.org/10.1016/j.immuni.2017.06.020

    Article  CAS  PubMed  Google Scholar 

  46. National Center for Biotechnology Information, US National Library of Medicine, Rockville Pike. https://www.ncbi.nlm.nih.gov/nuccore/. Accessed Sept 2018

  47. National Center for Biotechnology Information, US National Library of Medicine, Rockville Pike. www.ncbi.nlm.nih.gov/BLAST. Accessed Sept 2018

  48. Pereira TC, Pascoal VDB, Secolin R et al (2007) Strand analysis, a free online program for the computational identification of the best RNA interference (RNAi) targets based on Gibbs free energy. Genet Mol Biol 30(4):1206–1208. https://doi.org/10.1590/S1415-47572007000600030

    Article  CAS  Google Scholar 

  49. Pascoal VDB, Marchesini RB, Matos AHB et al (2010) The il1β have a protective action in the acute phase of the pilocarpine-induced epilepsy model. J Epilepsy Clin Neurophysiol 16(3):97–99. https://doi.org/10.1590/S1676-26492010000300003

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian agencies Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support.

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Jose da Silva Fernandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Amorim, R.P., Lopes Cendes, I.T., da Silva Fernandes, M.J. (2020). Using RNA Interference for Purinoceptor Knockdown In Vivo. In: Pelegrín, P. (eds) Purinergic Signaling. Methods in Molecular Biology, vol 2041. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9717-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9717-6_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9716-9

  • Online ISBN: 978-1-4939-9717-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics