Skip to main content

Top-Down Proteomics Applied to Human Cerebrospinal Fluid

  • Protocol
  • First Online:
Book cover Cerebrospinal Fluid (CSF) Proteomics

Abstract

Cerebrospinal fluid (CSF) is the fluid of choice to study pathologies and disorders of the central nervous system (CNS). Its composition, especially its proteins and peptides, holds the promise that it may reflect the pathological state of an individual. Traditionally, proteins and peptides in CSF have been analyzed using bottom-up proteomics technologies in the search of high proteome coverage. However, the limited protein sequence coverage of this technology means that information regarding post-translational modifications (PTMs) and alternative splice variants is lost. As an alternative technology, top-down proteomics offers low to medium proteome coverage, but high protein coverage enabling almost a full characterization of the proteins’ primary structure. This allows us to precisely identify distinct molecular forms of proteins (proteoforms) as well as naturally occurring bioactive peptide fragments, which could be of critical biological relevance and would otherwise remain undetected with a classical proteomics approach.

Here, we describe various strategies including sample preparation protocols, off-line intact protein prefractionation, and LC-MS/MS methods together with data analysis pipelines to analyze cerebrospinal fluid (CSF) by top-down proteomics. However, there is not a unique or standardized method and the selection of the top-down strategy will depend on the exact goal of the study. Here, we describe various top-down proteomics methods that enable rapid protein characterization and may be an excellent companion analytical workflow in the search for new protein biomarkers in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vialaret J, Schmit PO, Lehmann S, Gabelle A, Wood J, Bern M, Paape R, Suckau D, Kruppa G, Hirtz C (2018) Identification of multiple proteoforms biomarkers on clinical samples by routine Top-Down approaches. Data Brief 18:1013–1021

    Article  Google Scholar 

  2. Smith LM, Kelleher NL, Consortium for Top Down P (2013) Proteoform: a single term describing protein complexity. Nat Methods 10(3):186–187

    Article  CAS  Google Scholar 

  3. Aebersold R, Agar JN, Amster IJ, Baker MS, Bertozzi CR, Boja ES, Costello CE, Cravatt BF, Fenselau C, Garcia BA, Ge Y, Gunawardena J, Hendrickson RC, Hergenrother PJ, Huber CG, Ivanov AR, Jensen ON, Jewett MC, Kelleher NL, Kiessling LL, Krogan NJ, Larsen MR, Loo JA, Ogorzalek Loo RR, Lundberg E, MacCoss MJ, Mallick P, Mootha VK, Mrksich M, Muir TW, Patrie SM, Pesavento JJ, Pitteri SJ, Rodriguez H, Saghatelian A, Sandoval W, Schluter H, Sechi S, Slavoff SA, Smith LM, Snyder MP, Thomas PM, Uhlen M, Van Eyk JE, Vidal M, Walt DR, White FM, Williams ER, Wohlschlager T, Wysocki VH, Yates NA, Young NL, Zhang B (2018) How many human proteoforms are there? Nat Chem Biol 14(3):206–214

    Article  CAS  Google Scholar 

  4. Sea L (2016) Profiling of intact proteins in the CSF of Alzheimer’s disease patients using top down clinical proteomics (TDCP): a new approach giving access to isoform specific information of neurodegenerative biomarkers. Alzheimers Dement 12(7):183–184

    Google Scholar 

  5. Cabras T, Pisano E, Montaldo C, Giuca MR, Iavarone F, Zampino G, Castagnola M, Messana I (2013) Significant modifications of the salivary proteome potentially associated with complications of Down syndrome revealed by top-down proteomics. Mol Cell Proteomics 12(7):1844–1852

    Article  CAS  Google Scholar 

  6. Gregorich ZR, Ge Y (2014) Top-down proteomics in health and disease: challenges and opportunities. Proteomics 14(10):1195–1210

    Article  CAS  Google Scholar 

  7. Schutzer SE, Liu T, Natelson BH, Angel TE, Schepmoes AA, Purvine SO, Hixson KK, Lipton MS, Camp DG, Coyle PK, Smith RD, Bergquist J (2010) Establishing the proteome of normal human cerebrospinal fluid. PLoS One 5(6):e10980

    Article  Google Scholar 

  8. Stoop MP, Coulier L, Rosenling T, Shi S, Smolinska AM, Buydens L, Ampt K, Stingl C, Dane A, Muilwijk B, Luitwieler RL, Sillevis Smitt PA, Hintzen RQ, Bischoff R, Wijmenga SS, Hankemeier T, van Gool AJ, Luider TM (2010) Quantitative proteomics and metabolomics analysis of normal human cerebrospinal fluid samples. Mol Cell Proteomics 9(9):2063–2075

    Article  CAS  Google Scholar 

  9. Huhmer AF, Biringer RG, Amato H, Fonteh AN, Harrington MG (2006) Protein analysis in human cerebrospinal fluid: physiological aspects, current progress and future challenges. Dis Markers 22(1-2):3–26

    Article  Google Scholar 

  10. Bora A, Anderson C, Bachani M, Nath A, Cotter RJ (2012) Robust two-dimensional separation of intact proteins for bottom-up tandem mass spectrometry of the human CSF proteome. J Proteome Res 11(6):3143–3149

    Article  CAS  Google Scholar 

  11. Spreafico F, Bongarzone I, Pizzamiglio S, Magni R, Taverna E, De Bortoli M, Ciniselli CM, Barzano E, Biassoni V, Luchini A, Liotta LA, Zhou W, Signore M, Verderio P, Massimino M (2017) Proteomic analysis of cerebrospinal fluid from children with central nervous system tumors identifies candidate proteins relating to tumor metastatic spread. Oncotarget 8(28):46177–46190

    Article  Google Scholar 

  12. Desiderio C, D’Angelo L, Rossetti DV, Iavarone F, Giardina B, Castagnola M, Massimi L, Tamburrini G, Di Rocco C (2012) Cerebrospinal fluid top-down proteomics evidenced the potential biomarker role of LVV- and VV-hemorphin-7 in posterior cranial fossa pediatric brain tumors. Proteomics 12(13):2158–2166

    Article  CAS  Google Scholar 

  13. Borg J, Campos A, Diema C, Omenaca N, de Oliveira E, Guinovart J, Vilaseca M (2011) Spectral counting assessment of protein dynamic range in cerebrospinal fluid following depletion with plasma-designed immunoaffinity columns. Clin Proteomics 8(1):6

    Article  CAS  Google Scholar 

  14. LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ (2005) Dopamine covalently modifies and functionally inactivates parkin. Nat Med 11(11):1214–1221

    Article  CAS  Google Scholar 

  15. Yan SD (1994) Glycated thau protein in Alzheimer disease: a mechanism for induction of oxidative stress. Proc Natl Acad Sci U S A 91:7787–7791

    Article  CAS  Google Scholar 

  16. Vila-Rico M, Colome-Calls N, Martin-Castel L, Gay M, Azorin S, Vilaseca M, Planas A, Canals F (2015) Quantitative analysis of post-translational modifications in human serum transthyretin associated with familial amyloidotic polyneuropathy by targeted LC-MS and intact protein MS. J Proteomics 127(Pt B):234–246

    Article  CAS  Google Scholar 

  17. Kabashi E, Valdmanis PN, Dion P, Rouleau GA (2007) Oxidized/misfolded superoxide dismutase-1: the cause of all amyotrophic lateral sclerosis? Ann Neurol 62(6):553–559

    Article  CAS  Google Scholar 

  18. Costa M, Horrillo R, Ortiz AM, Perez A, Mestre A, Ruiz A, Boada M, Grancha S (2018) Increased albumin oxidation in cerebrospinal fluid and plasma from Alzheimer’s Disease patients. J Alzheimers Dis 63(4):1395–1404

    Article  CAS  Google Scholar 

  19. Kawakami A, Kubota K, Yamada N, Tagami U, Takehana K, Sonaka I, Suzuki E, Hirayama K (2006) Identification and characterization of oxidized human serum albumin. A slight structural change impairs its ligand-binding and antioxidant functions. FEBS J 273(14):3346–3357

    Article  CAS  Google Scholar 

  20. Stark M, Danielsson O, Griffiths WJ, Jornvall H, Johansson J (2001) Peptide repertoire of human cerebrospinal fluid: novel proteolytic fragments of neuroendocrine proteins. J Chromatogr B Biomed Sci Appl 754(2):357–367

    Article  CAS  Google Scholar 

  21. Yuan X, Desiderio DM (2005) Human cerebrospinal fluid peptidomics. J Mass Spectrom 40:176–181

    Article  CAS  Google Scholar 

  22. Mohring T, Kellmann M, Jurgens M, Schrader M (2005) Top-down identification of endogenous peptides up to 9 kDa in cerebrospinal fluid and brain tissue by nanoelectrospray quadrupole time-of-flight tandem mass spectrometry. J Mass Spectrom 40(2):214–226

    Article  Google Scholar 

  23. Gabelle A, Roche S, Lehmann S (2009) CSF biomarkers: proteomics investigations and clinical applications in neurodegenerative disorders. Rev Neurol 165(3):213–222

    Article  CAS  Google Scholar 

  24. D’Silva AM, Hyett JA, Coorssen JR (2017) A routine ‘Top-Down’ approach to analysis of the human serum proteome. Proteomes 5(2):E13

    Article  Google Scholar 

  25. Pernemalm M, Orre LM, Lengqvist J, Wikstrom P, Lewensohn R, Lehtio J (2008) Evaluation of three principally different intact protein prefractionation methods for plasma biomarker discovery. J Proteome Res 7(7):2712–2722

    Article  CAS  Google Scholar 

  26. Kay R, Barton C, Ratcliffe L, Matharoo-Ball B, Brown P, Roberts J, Teale P, Creaser C (2008) Enrichment of low molecular weight serum proteins using acetonitrile precipitation for mass spectrometry based proteomic analysis. Rapid Commun Mass Spectrom 22(20):3255–3260

    Article  CAS  Google Scholar 

  27. Larssen E, Brede C, Hjelle AB, Oysaed KB, Tjensvoll AB, Omdal R, Ruoff P (2015) A rapid method for preparation of the cerebrospinal fluid proteome. Proteomics 15(1):10–15

    Article  CAS  Google Scholar 

  28. Tran JC, Doucette AA (2008) Gel-eluted liquid fraction entrapment electrophoresis: an electrophoretic method for broad molecular weight range proteome separation. Anal Chem 80(5):1568–1573

    Article  CAS  Google Scholar 

  29. Tran JC, Doucette AA (2009) Multiplexed size separation of intact proteins in solution phase for mass spectrometry. Anal Chem 81(15):6201–6209

    Article  CAS  Google Scholar 

  30. Lee JE, Kellie JF, Tran JC, Tipton JD, Catherman AD, Thomas HM, Ahlf DR, Durbin KR, Vellaichamy A, Ntai I, Marshall AG, Kelleher NL (2009) A robust two-dimensional separation for top-down tandem mass spectrometry of the low-mass proteome. J Am Soc Mass Spectrom 20(12):2183–2191

    Article  CAS  Google Scholar 

  31. Catherman AD, Durbin KR, Ahlf DR, Early BP, Fellers RT, Tran JC, Thomas PM, Kelleher NL (2013) Large-scale top-down proteomics of the human proteome: membrane proteins, mitochondria, and senescence. Mol Cell Proteomics 12(12):3465–3473

    Article  CAS  Google Scholar 

  32. Tran JC, Zamdborg L, Ahlf DR, Lee JE, Catherman AD, Durbin KR, Tipton JD, Vellaichamy A, Kellie JF, Li M, Wu C, Sweet SM, Early BP, Siuti N, LeDuc RD, Compton PD, Thomas PM, Kelleher NL (2011) Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 480(7376):254–258

    Article  CAS  Google Scholar 

  33. Ntai I, Kim K, Fellers RT, Skinner OS, ADt S, Early BP, Savaryn JP, LeDuc RD, Thomas PM, Kelleher NL (2014) Applying label-free quantitation to top down proteomics. Anal Chem 86(10):4961–4968

    Article  CAS  Google Scholar 

  34. Cheon DH, Nam EJ, Park KH, Woo SJ, Lee HJ, Kim HC, Yang EG, Lee C, Lee JE (2016) Comprehensive analysis of low-molecular-weight human plasma proteome using top-down mass spectrometry. J Proteome Res 15(1):229–244

    Article  CAS  Google Scholar 

  35. Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138(1):141–143

    Article  CAS  Google Scholar 

  36. Puchades M, Westman A, Blennow K, Davidsson P (1999) Removal of sodium dodecyl sulfate from protein samples prior to matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 13(5):344–349

    Article  CAS  Google Scholar 

  37. Kim KH, Compton PD, Tran JC, Kelleher NL (2015) Online matrix removal platform for coupling gel-based separations to whole protein electrospray ionization mass spectrometry. J Proteome Res 14(5):2199–2206

    Article  CAS  Google Scholar 

  38. Abdi F, Quinn JF, Jankovic J, McIntosh M, Leverenz JB, Peskind E, Nixon R, Nutt J, Chung K, Zabetian C, Samii A, Lin M, Hattan S, Pan C, Wang Y, Jin J, Zhu D, Li GJ, Liu Y, Waichunas D, Montine TJ, Zhang J (2006) Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J Alzheimers Dis 9(3):293–348

    Article  CAS  Google Scholar 

  39. Gay M, Carrascal M, Gorga M, Pares A, Abian J (2010) Characterization of peptides and proteins in commercial HSA solutions. Proteomics 10(2):172–181

    Article  CAS  Google Scholar 

  40. Toby TK, Fornelli L, Kelleher NL (2016) Progress in top-down proteomics and the analysis of proteoforms. Annu Rev Anal Chem 9(1):499–519

    Article  CAS  Google Scholar 

  41. Horn DM, Zubarev RA, McLafferty FW (2000) Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. J Am Soc Mass Spectrom 11(4):320–332

    Article  CAS  Google Scholar 

  42. Zabrouskov V, Senko MW, Du Y, Leduc RD, Kelleher NL (2005) New and automated MSn approaches for top-down identification of modified proteins. J Am Soc Mass Spectrom 16(12):2027–2038

    Article  CAS  Google Scholar 

  43. Liu X, Inbar Y, Dorrestein PC, Wynne C, Edwards N, Souda P, Whitelegge JP, Bafna V, Pevzner PA (2010) Deconvolution and database search of complex tandem mass spectra of intact proteins: a combinatorial approach. Mol Cell Proteomics 9(12):2772–2782

    Article  CAS  Google Scholar 

  44. Frank AM, Pesavento JJ, Mizzen CA, Kelleher NL, Pevzner PA (2008) Interpreting top-down mass spectra using spectral alignment. Anal Chem 80(7):2499–2505

    Article  CAS  Google Scholar 

  45. DeHart CJ, Fellers RT, Fornelli L, Kelleher NL, Thomas PM (2017) Bioinformatics analysis of top-down mass spectrometry data with prosight lite. Methods Mol Biol 1558:381–394

    Article  CAS  Google Scholar 

  46. LeDuc RD, Taylor GK, Kim YB, Januszyk TE, Bynum LH, Sola JV, Garavelli JS, Kelleher NL (2004) ProSight PTM: an integrated environment for protein identification and characterization by top-down mass spectrometry. Nucleic Acids Res 32(Web Server):W340–W345

    Article  CAS  Google Scholar 

  47. Kou Q, Xun L, Liu X (2016) TopPIC: a software tool for top-down mass spectrometry-based proteoform identification and characterization. Bioinformatics 32(22):3495–3497

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kou Q, Zhu B, Wu S, Ansong C, Tolic N, Pasa-Tolic L, Liu X (2016) Characterization of Proteoforms with Unknown Post-translational Modifications Using the MIScore. J Proteome Res 15(8):2422–2432

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Argyro Dermitzaki for the help in bibliographic search and Antonio Lorenzo for their assistance. They also thank Thermo Scientific for their support, Prof. Jacques Borg, formerly at Université Jean Monnet, Saint-Étienne, France, for his transfer of knowledge about CSF, and Prof. Neil Kelleher and Dr. Ken Durbin from Northwestern University for the data analysis tools and support.

This work was supported by IRB Barcelona funds. The IRB Barcelona Mass Spectrometry and Proteomics Core Facility, where most of the CSF analyses have been performed, has been active part of the BMBS European COST Action BM 1403 and is a member of Proteored, PRB3-ISCIII, supported by grant PRB3 (PT17/0019/0022- ISCIII-SGEFI / ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Vilaseca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gay, M. et al. (2019). Top-Down Proteomics Applied to Human Cerebrospinal Fluid. In: Santamaría, E., Fernández-Irigoyen, J. (eds) Cerebrospinal Fluid (CSF) Proteomics. Methods in Molecular Biology, vol 2044. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9706-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9706-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9705-3

  • Online ISBN: 978-1-4939-9706-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics