Skip to main content

Tissue-Specific Delivery of Oligonucleotides

  • Protocol
  • First Online:
Book cover Oligonucleotide-Based Therapies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2036))

Abstract

From the initial discovery of short-interfering RNA (siRNA) and antisense oligonucleotides for specific gene knockdown at the posttranscriptional level to the current CRISPR-Cas9 system offering gene editing at the genomic level, oligonucleotides, in addition to their biological functions in storing and conveying genetic information, provide the most prominent solutions to targeted gene therapies. Nonetheless, looking into the future of curing cancer and acute diseases, researchers are only cautiously optimistic as the cellular delivery of these polyanionic biomacromolecules is still the biggest hurdle for their therapeutic realization. To overcome the delivery obstacle, oligonucleotides have been encapsulated within or conjugated with delivery vehicles for enhanced membrane penetration, improved payload, and tissue-specific delivery. Such delivery systems include but not limited to virus-based vehicles, gold-nanoparticle vehicles, formulated liposomes, and synthetic polymers. In this chapter, delivery challenges imposed by biological barriers are briefly discussed; followed by recent advances in tissue-specific oligonucleotide delivery utilizing both viral and nonviral delivery vectors, discussing their advantages, and how judicious design and formulation could improve and expand their potential as delivery vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Montecalvo A, Larregina AT, Shufesky WJ et al (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119:756–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Furusawa M, Nishimura T, Yamaizumi M et al (1974) Injection of foreign substances into single cells by cell fusion. Nature 249:449–450

    Article  CAS  PubMed  Google Scholar 

  3. McNamara JO, Andrechek ER, Wang Y et al (2006) Cell type–specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 24:1005–1015

    Article  CAS  PubMed  Google Scholar 

  4. Dassie JP, Liu X-Y, Thomas GS et al (2009) Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol 27:839–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rice RR, Muirhead AN, Harrison BT et al (2005) Simple, robust strategies for generating DNA-directed RNA interference constructs, RNA interference. Elsevier, Amsterdam, pp 405–419

    Google Scholar 

  6. Jiang H-L, Choi Y-J, Cho M-H et al (2010) Chitosan and chitosan derivatives as DNA and siRNA carriers, Chitin, chitosan, oligosaccharides and their derivatives. CRC Press, London, pp 377–390

    Google Scholar 

  7. Aied A, Greiser U, Pandit A et al (2013) Polymer gene delivery: overcoming the obstacles. Drug Discov Today 18:1090–1098

    Article  CAS  PubMed  Google Scholar 

  8. Mitragotri S, Burke PA, Langer R (2014) Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 13:655–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Naldini L (2015) Gene therapy returns to centre stage. Nature 526:351–360

    Article  CAS  PubMed  Google Scholar 

  10. Naldini L (2011) Ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet 12:301–315

    Article  CAS  PubMed  Google Scholar 

  11. Wittrup A, Lieberman J (2015) Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet 16:543–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stewart MP, Sharei A, Ding X et al (2016) In vitro and ex vivo strategies for intracellular delivery. Nature 538:183–192

    Article  CAS  PubMed  Google Scholar 

  13. Yin H, Kanasty RL, Eltoukhy AA et al (2014) Non-viral vectors for gene-based therapy. Nat Rev Genet 15:541–555

    Article  CAS  PubMed  Google Scholar 

  14. Larocca D, Burg MA, Jensen-Pergakes K et al (2002) Evolving phage vectors for cell targeted gene delivery. Curr Pharm Biotechnol 3:45–57

    Article  CAS  PubMed  Google Scholar 

  15. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  CAS  PubMed  Google Scholar 

  16. Poul MA, Marks JD (1999) Targeted gene delivery to mammalian cells by filamentous bacteriophage. J Mol Biol 288:203–211

    Article  CAS  PubMed  Google Scholar 

  17. Davidson BL, Harper SQ (2005) Viral delivery of recombinant short hairpin RNAs. Methods Enzymol 392:145–173

    Article  CAS  PubMed  Google Scholar 

  18. Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 7:33–40

    Article  CAS  PubMed  Google Scholar 

  19. Di Giusto DL, Krishnan A, Li L, et al (2010) RNA-based gene therapy for HIV with lentiviral vector modified CD34 cells in patients undergoing transplantation for AIDS-related lymphoma. Issues Sci Transl Med 2(36): 36ra43

    Google Scholar 

  20. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358

    Article  CAS  PubMed  Google Scholar 

  21. Gao G-P, Alvira MR, Wang L et al (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 99:11854–11859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Daya S, Berns KI (2008) Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 21:583–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pack DW, Hoffman AS, Pun S et al (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4:581–593

    Article  CAS  PubMed  Google Scholar 

  24. Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109:259–302

    Article  CAS  PubMed  Google Scholar 

  25. Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348:62–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. June CH, Riddell SR, Schumacher TN (2015) Adoptive cellular therapy: a race to the finish line. Sci Transl Med 7:280ps7

    Article  PubMed  CAS  Google Scholar 

  27. Seow Y, Wood MJ (2009) Biological gene delivery vehicles: beyond viral vectors. Mol Ther 17:767–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li S-D, Huang L (2006) Gene therapy progress and prospects: non-viral gene therapy by systemic delivery. Gene Ther 13:1313–1319

    Article  CAS  PubMed  Google Scholar 

  29. Zimmermann TS, Lee ACH, Akinc A et al (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114

    Article  CAS  PubMed  Google Scholar 

  30. Scherer LJ, Rossi JJ (2003) Approaches for the sequence-specific knockdown of mRNA. Nat Biotechnol 21:1457–1465

    Article  CAS  PubMed  Google Scholar 

  31. Gonzalez H, Hwang SJ, Davis ME (1999) New class of polymers for the delivery of macromolecular therapeutics. Bioconjug Chem 10:1068–1074

    Article  CAS  PubMed  Google Scholar 

  32. Liu Y, Wenning L, Lynch M (2004) New poly (D-glucaramidoamine) s induce DNA nanoparticle formation and efficient gene delivery into mammalian cells. J Am Chem Soc 126(24):7422–7423

    Article  CAS  PubMed  Google Scholar 

  33. Park JS, Yi SW, Kim HJ et al (2016) Receptor-mediated gene delivery into human mesenchymal stem cells using hyaluronic acid-shielded polyethylenimine/pDNA nanogels. Carbohydr Polym 136:791–802

    Article  CAS  PubMed  Google Scholar 

  34. Akinc A, Lynn DM, Anderson DG et al (2003) Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery. J Am Chem Soc 125:5316–5323

    Article  CAS  PubMed  Google Scholar 

  35. Green JJ, Langer R, Anderson DG (2008) A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc Chem Res 41:749–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Putnam D, Gentry CA, Pack DW et al (2001) Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc Natl Acad Sci U S A 98:1200–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oberli MA, Reichmuth AM, Dorkin JR et al (2017) Lipid Nanoparticle Assisted mRNA Delivery for Potent Cancer Immunotherapy. Nano Lett 17:1326–1335

    Article  CAS  PubMed  Google Scholar 

  38. Yu AC, Chen H, Chan D et al (2016) Scalable manufacturing of biomimetic moldable hydrogels for industrial applications. Proc Natl Acad Sci U S A 113:14255–14260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dahlman JE, Kauffman KJ, Xing Y et al (2017) Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc Natl Acad Sci U S A 114:2060–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  CAS  PubMed  Google Scholar 

  42. Zamore PD, Tuschl T, Sharp PA et al (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    Article  CAS  PubMed  Google Scholar 

  43. Han M-H, Goud S, Song L et al (2004) The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc Natl Acad Sci U S A 101:1093–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Iorio MV, Ferracin M, Liu C-G et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    Article  CAS  PubMed  Google Scholar 

  45. Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12:847–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roberts TC, Wood MJA (2013) Therapeutic targeting of non-coding RNAs. Essays Biochem 54:127–145

    Article  CAS  PubMed  Google Scholar 

  47. Hobert O (2008) Gene regulation by transcription factors and microRNAs. Science 319:1785–1786

    Article  CAS  PubMed  Google Scholar 

  48. Xia H, Mao Q, Paulson HL et al (2002) siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 20:1006–1010

    Article  CAS  PubMed  Google Scholar 

  49. Morris KV, Chan SW-L, Jacobsen SE et al (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305:1289–1292

    Article  CAS  PubMed  Google Scholar 

  50. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  CAS  PubMed  Google Scholar 

  51. Chendrimada TP, Gregory RI, Kumaraswamy E et al (2005) TRBP recruits the dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747

    Article  CAS  PubMed  Google Scholar 

  53. Liang X-H, Sun H, Nichols JG et al (2017) RNase H1-dependent antisense oligonucleotides are robustly active in directing RNA cleavage in both the cytoplasm and the nucleus. Mol Ther 25:2075–2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nowotny M, Gaidamakov SA, Crouch RJ et al (2005) Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121:1005–1016

    Article  CAS  PubMed  Google Scholar 

  55. Inoue H, Hayase Y, Iwai S et al (1987) Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and RNase H. FEBS Lett 215:327–330

    Article  CAS  PubMed  Google Scholar 

  56. Walder RY, Walder JA (1988) Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proc Natl Acad Sci U S A 85:5011–5015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vickers TA, Koo S, Bennett CF et al (2003) Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem 278:7108–7118

    Article  CAS  PubMed  Google Scholar 

  58. Bonham MA, Brown S, Boyd AL et al (1995) An assessment of the antisense properties of RNase H-competent and steric-blocking oligomers. Nucleic Acids Res 23:1197–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11:125–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Morcos PA (2007) Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos. Biochem Biophys Res Commun 358:521–527

    Article  CAS  PubMed  Google Scholar 

  61. Woolf TM (1995) To Cleave or Not To Cleave: Ribozymes and Antisense. Antisense Res Dev 5:227–232

    Article  CAS  PubMed  Google Scholar 

  62. Dias N, Dheur S, Nielsen PE et al (1999) Antisense PNA tridecamers targeted to the coding region of ha-ras mRNA arrest polypeptide chain elongation1. J Mol Biol 294:403–416

    Article  CAS  PubMed  Google Scholar 

  63. Lennox KA, Behlke MA (2016) Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res 44:863–877

    Article  CAS  PubMed  Google Scholar 

  64. Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science 338:1435–1439

    Article  CAS  PubMed  Google Scholar 

  65. Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20:300–307

    Article  CAS  PubMed  Google Scholar 

  66. Huarte M (2015) The emerging role of lncRNAs in cancer. Nat Med 21:1253–1261

    Article  CAS  PubMed  Google Scholar 

  67. Kher G, Trehan S, Misra A (2011) 7- Antisense Oligonucleotides and RNA Interference. In: Misra A (ed) Challenges in delivery of therapeutic genomics and proteomics. Elsevier, London, pp 325–386

    Chapter  Google Scholar 

  68. Karikó K, Bhuyan P, Capodici J et al (2004) Exogenous siRNA mediates sequence-independent gene suppression by signaling through toll-like receptor 3. Cells Tissues Organs 177:132–138

    Article  PubMed  CAS  Google Scholar 

  69. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  CAS  PubMed  Google Scholar 

  70. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  CAS  PubMed  Google Scholar 

  71. Nair JK, Attarwala H, Sehgal A et al (2017) Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates. Nucleic Acids Res 45:10969–10977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sashital DG, Doudna JA (2010) Structural insights into RNA interference. Curr Opin Struct Biol 20:90–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Murante RS, Henricksen LA, Bambara RA (1998) Junction ribonuclease: an activity in Okazaki fragment processing. Proc Natl Acad Sci U S A 95:2244–2249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu B, Hu J, Wang J et al (2017) Direct visualization of RNA-DNA primer removal from Okazaki fragments provides support for flap cleavage and exonucleolytic pathways in eukaryotic cells. J Biol Chem 292(12):4777–4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Qiu J, Qian Y, Frank P et al (1999) Saccharomyces cerevisiae RNase H(35) functions in RNA primer removal during lagging-strand DNA synthesis, most efficiently in cooperation with Rad27 nuclease. Mol Cell Biol 19:8361–8371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cerritelli SM, Crouch RJ (2009) Ribonuclease H: the enzymes in eukaryotes. FEBS J 276:1494–1505

    Article  CAS  PubMed  Google Scholar 

  77. Kielpinski LJ, Hagedorn PH, Lindow M et al (2017) RNase H sequence preferences influence antisense oligonucleotide efficiency. Nucleic Acids Res 45:12932–12944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Resina S, Kole R, Travo A et al (2007) Switching on transgene expression by correcting aberrant splicing using multi-targeting steric-blocking oligonucleotides. J Gene Med 9:498–510

    Article  CAS  PubMed  Google Scholar 

  79. Owens DE 3rd, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  CAS  PubMed  Google Scholar 

  80. Liu Y, Li J, Shao K et al (2010) A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery. Biomaterials 31:5246–5257

    Article  CAS  PubMed  Google Scholar 

  81. Rosales C, Uribe-Querol E (2017) Phagocytosis: a fundamental process in immunity. Biomed Res Int 2017:9042851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Sansonetti PJ (2000) Phagocytosis, a cell biology view. J Cell Sci 113:3355–3356

    CAS  Google Scholar 

  83. Aderem A (2003) Phagocytosis and the Inflammatory Response. J Infect Dis 187:S340–S345

    Article  CAS  PubMed  Google Scholar 

  84. Czuprynski CJ (2016) Opsonization and Phagocytosis. In: Vohr H-W (ed) Encyclopedia of immunotoxicology. Springer, Berlin, Heidelberg, pp 674–676

    Chapter  Google Scholar 

  85. Choi HS, Liu W, Misra P et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221

    Article  CAS  PubMed  Google Scholar 

  87. Hatakeyama H, Akita H, Harashima H (2011) A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv Drug Deliv Rev 63:152–160

    Article  CAS  PubMed  Google Scholar 

  88. Mishra S, Webster P, Davis ME (2004) PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol 83:97–111

    Article  CAS  PubMed  Google Scholar 

  89. Suk JS, Xu Q, Kim N et al (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99:28–51

    Article  CAS  PubMed  Google Scholar 

  90. Webber MJ, Appel EA, Vinciguerra B et al (2016) Supramolecular PEGylation of biopharmaceuticals. Proc Natl Acad Sci U S A 113:14189–14194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Salvati A, Pitek AS, Monopoli MP et al (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8:137–143

    Article  CAS  PubMed  Google Scholar 

  92. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  93. Maeda H, Wu J, Sawa T et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  CAS  PubMed  Google Scholar 

  94. Fang J, Nakamura H, Maeda H (2011) The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151

    Article  CAS  PubMed  Google Scholar 

  95. Prabhakar U, Maeda H, Jain RK et al (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73:2412–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nakamura Y, Mochida A, Choyke PL et al (2016) Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem 27:2225–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989

    Article  CAS  PubMed  Google Scholar 

  98. Ferretti S, Allegrini PR, Becquet MM et al (2009) Tumor interstitial fluid pressure as an early-response marker for anticancer therapeutics. Neoplasia 11:874–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Northey JJ, Przybyla L, Weaver VM (2017) tissue force programs cell fate and tumor aggression. Cancer Discov 7:1224–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Greish K (2010) Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol 624:25–37

    Article  CAS  PubMed  Google Scholar 

  101. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902

    Article  CAS  PubMed  Google Scholar 

  102. Mishra S, Heidel JD, Webster P et al (2006) Imidazole groups on a linear, cyclodextrin-containing polycation produce enhanced gene delivery via multiple processes. J Control Release 116:179–191

    Article  CAS  PubMed  Google Scholar 

  103. Varkouhi AK, Scholte M, Storm G et al (2011) Endosomal escape pathways for delivery of biologicals. J Control Release 151:220–228

    Article  CAS  PubMed  Google Scholar 

  104. Stewart MP, Lorenz A, Dahlman J et al (2016) Challenges in carrier-mediated intracellular delivery: moving beyond endosomal barriers. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:465–478

    Article  PubMed  Google Scholar 

  105. Akinc A, Thomas M, Klibanov AM et al (2005) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 7:657–663

    Article  CAS  PubMed  Google Scholar 

  106. Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19:1584–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pardridge WM (2007) shRNA and siRNA delivery to the brain. Adv Drug Deliv Rev 59:141–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pardridge WM (2002) Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 1:131–139

    Article  CAS  PubMed  Google Scholar 

  109. Georgieva JV, Hoekstra D, Zuhorn IS (2014) Smuggling drugs into the brain: an overview of ligands targeting transcytosis for drug delivery across the blood-brain barrier. Pharmaceutics 6:557–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bertrand N, Wu J, Xu X et al (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    Article  CAS  PubMed  Google Scholar 

  111. Karimi M, Ghasemi A, Sahandi Zangabad P et al (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45:1457–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Schiffelers RM, Ansari A, Xu J et al (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32:e149

    Article  PubMed  PubMed Central  Google Scholar 

  114. Veiman K-L, Künnapuu K, Lehto T et al (2015) PEG shielded MMP sensitive CPPs for efficient and tumor specific gene delivery in vivo. J Control Release 209:238–247

    Article  CAS  PubMed  Google Scholar 

  115. Kaul G, Amiji M (2005) Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm Res 22:951–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hu Y, Haynes MT, Wang Y et al (2013) A Highly efficient synthetic vector: nonhydrodynamic delivery of DNA to hepatocyte nuclei in vivo. ACS Nano 7:5376–5384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rodriguez PL, Harada T, Christian DA et al (2013) Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339:971–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Usman WM, Pham TC, Kwok YY et al (2018) Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat Commun 9:2359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Villa CH, Anselmo AC, Mitragotri S et al (2016) Red blood cells: supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv Drug Deliv Rev 106:88–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Muzykantov VR (2010) Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Deliv 7:403–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Parodi A, Quattrocchi N, van de Ven AL et al (2013) Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 8:61–68

    Article  CAS  PubMed  Google Scholar 

  122. Hu Q, Sun W, Qian C et al (2015) Anticancer platelet-mimicking nanovehicles. Adv Mater 27:7043–7050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Anselmo AC, Modery-Pawlowski CL, Menegatti S et al (2014) Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano 8:11243–11253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kraus M, Wolf B (1996) Implications of acidic tumor microenvironment for neoplastic growth and cancer treatment: a computer analysis. Tumour Biol 17:133–154

    Article  CAS  PubMed  Google Scholar 

  125. Estrella V, Chen T, Lloyd M et al (2013) Acidity generated by the tumor microenvironment drives local invasion. Cancer Res 73:1524–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146

    Article  CAS  PubMed  Google Scholar 

  127. Xia J, Tian H, Chen J et al (2016) pH-triggered sheddable shielding system for polycationic gene carriers. Polymers 8:141

    Article  PubMed Central  CAS  Google Scholar 

  128. Dimde M, Neumann F, Reisbeck F et al (2017) Defined pH-sensitive nanogels as gene delivery platform for siRNA mediated in vitro gene silencing. Biomater Sci 5:2328–2336

    Article  CAS  PubMed  Google Scholar 

  129. Sethuraman VA, Na K, Bae YH (2006) pH-responsive sulfonamide/PEI system for tumor specific gene delivery: an in vitro study. Biomacromolecules 7:64–70

    Article  CAS  PubMed  Google Scholar 

  130. Li H-J, Du J-Z, Liu J et al (2016) Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano 10:6753–6761

    Article  CAS  PubMed  Google Scholar 

  131. Teotia AK, Sami H, Kumar A (2015) 1- Thermo-responsive polymers: structure and design of smart materials. In: zhang z (ed) switchable and responsive surfaces and materials for biomedical applications. Woodhead Publishing, Oxford, pp 3–43

    Chapter  Google Scholar 

  132. Hoogenboom R (2014) Temperature-responsive polymers: properties, synthesis and applications. In: Aguilar MR, San Román J (eds) Smart polymers and their applications. Woodhead Publishing, Oxford, pp 15–44

    Chapter  Google Scholar 

  133. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    Article  CAS  PubMed  Google Scholar 

  134. Twaites BR, de las HAC, Cunliffe D et al (2004) Thermo and pH responsive polymers as gene delivery vectors: effect of polymer architecture on DNA complexation in vitro. J Control Release 97:551–566

    Article  CAS  PubMed  Google Scholar 

  135. Mykhaylyk O, Zelphati O, Rosenecker J et al (2008) siRNA delivery by magnetofection. Curr Opin Mol Ther 10:493–505

    CAS  PubMed  Google Scholar 

  136. Scherer F, Anton M, Schillinger U et al (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9:102–109

    Article  CAS  PubMed  Google Scholar 

  137. Bae KH, Lee K, Lee J et al (2011) Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. J Control Release 152(Suppl 1):e133–e134

    Article  CAS  PubMed  Google Scholar 

  138. Lee JH, Lee K, Moon SH et al (2009) All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed Engl 48(23):4174–4179

    Article  CAS  PubMed  Google Scholar 

  139. Medarova Z, Pham W, Farrar C et al (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13:372–377

    Article  CAS  PubMed  Google Scholar 

  140. Torchilin VP (2014) Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 13:813–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kelley EG, Albert JNL, Sullivan MO et al (2013) Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chem Soc Rev 42:7057–7071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Shen Y, Fu X, Fu W et al (2015) Biodegradable stimuli-responsive polypeptide materials prepared by ring opening polymerization. Chem Soc Rev 44:612–622

    Article  CAS  PubMed  Google Scholar 

  143. Becker AL, Orlotti NI, Folini M et al (2011) Redox-active polymer microcapsules for the delivery of a survivin-specific siRNA in prostate cancer cells. ACS Nano 5:1335–1344

    Article  CAS  PubMed  Google Scholar 

  144. Han L, Tang C, Yin C (2015) Dual-targeting and pH/redox-responsive multi-layered nanocomplexes for smart co-delivery of doxorubicin and siRNA. Biomaterials 60:42–52

    Article  CAS  PubMed  Google Scholar 

  145. Zhuang Y, Deng H, Su Y et al (2016) Aptamer-functionalized and backbone redox-responsive hyperbranched polymer for targeted drug delivery in cancer therapy. Biomacromolecules 17:2050–2062

    Article  CAS  PubMed  Google Scholar 

  146. Srinivasarao M, Low PS (2017) Ligand-targeted drug delivery. Chem Rev 117:12133–12164

    Article  CAS  PubMed  Google Scholar 

  147. Yang T, Li B, Qi S et al (2014) Co-delivery of doxorubicin and Bmi1 siRNA by folate receptor targeted liposomes exhibits enhanced anti-tumor effects in vitro and in vivo. Theranostics 4:1096–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yang C, Gao S, Kjems J (2014) Folic acid conjugated chitosan for targeted delivery of siRNA to activated macrophages in vitro and in vivo. J Mater Chem B Mater Biol Med 2:8608–8615

    Article  CAS  PubMed  Google Scholar 

  149. Lee H, Lytton-Jean AKR, Chen Y et al (2012) Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol 7:389–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Venturelli L, Nappini S, Bulfoni M et al (2016) Glucose is a key driver for GLUT1-mediated nanoparticles internalization in breast cancer cells. Sci Rep 6:21629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Murata J-I, Ohya Y, Ouchi T (1997) Design of quaternary chitosan conjugate having antennary galactose residues as a gene delivery tool. Carbohydr Polym 32:105–109

    Article  CAS  Google Scholar 

  152. Kim TH, Kim SI, Akaike T et al (2005) Synergistic effect of poly(ethylenimine) on the transfection efficiency of galactosylated chitosan/DNA complexes. J Control Release 105:354–366

    Article  CAS  PubMed  Google Scholar 

  153. Thapa B, Kumar P, Zeng H et al (2015) Asialoglycoprotein receptor-mediated gene delivery to hepatocytes using galactosylated polymers. Biomacromolecules 16:3008–3020

    Article  CAS  PubMed  Google Scholar 

  154. Zacco E, Hütter J, Heier JL et al (2015) Tailored presentation of carbohydrates on a coiled coil-based scaffold for asialoglycoprotein receptor targeting. ACS Chem Biol 10:2065–2072

    Article  CAS  PubMed  Google Scholar 

  155. Matsuda S, Keiser K, Nair JK et al (2015) siRNA conjugates carrying sequentially assembled trivalent N-acetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes. ACS Chem Biol 10:1181–1187

    Article  CAS  PubMed  Google Scholar 

  156. Nair JK, Willoughby JLS, Chan A et al (2014) Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc 136:16958–16961

    Article  CAS  PubMed  Google Scholar 

  157. Rajeev KG, Nair JK, Jayaraman M et al (2015) Hepatocyte-specific delivery of siRNAs conjugated to novel non-nucleosidic trivalent N-acetylgalactosamine elicits robust gene silencing in vivo. Chembiochem 16:903–908

    Article  CAS  PubMed  Google Scholar 

  158. Zhao L, Liu M, Wang J et al (2015) Chondroitin sulfate-based nanocarriers for drug/gene delivery. Carbohydr Polym 133:391–399

    Article  CAS  PubMed  Google Scholar 

  159. Xia W, Low PS (2010) Folate-targeted therapies for cancer. J Med Chem 53:6811–6824

    Article  CAS  PubMed  Google Scholar 

  160. Guo S, Huang F, Guo P (2006) Construction of folate-conjugated pRNA of bacteriophage phi29 DNA packaging motor for delivery of chimeric siRNA to nasopharyngeal carcinoma cells. Gene Ther 13:814–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Thomas M, Kularatne SA, Qi L et al (2009) Ligand-targeted delivery of small interfering RNAs to malignant cells and tissues. Ann N Y Acad Sci 1175:32–39

    Article  CAS  PubMed  Google Scholar 

  162. Shim MS, Kwon YJ (2010) Efficient and targeted delivery of siRNA in vivo: In vivo siRNA delivery. FEBS J 277:4814–4827

    Article  CAS  PubMed  Google Scholar 

  163. York AW, Zhang Y, Holley AC et al (2009) Facile synthesis of multivalent folate-block copolymer conjugates via aqueous RAFT polymerization: targeted delivery of siRNA and subsequent gene suppression. Biomacromolecules 10:936–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Arima H, Yoshimatsu A, Ikeda H et al (2012) Folate-PEG-appended dendrimer conjugate with α-cyclodextrin as a novel cancer cell-selective siRNA delivery carrier. Mol Pharm 9:2591–2604

    Article  CAS  PubMed  Google Scholar 

  165. Fernandes JC, Qiu X, Winnik FM et al (2012) Low molecular weight chitosan conjugated with folate for siRNA delivery in vitro: optimization studies. Int J Nanomedicine 7:5833–5845

    CAS  PubMed  PubMed Central  Google Scholar 

  166. York AW, Huang F, McCormick CL (2010) Rational design of targeted cancer therapeutics through the multiconjugation of folate and cleavable siRNA to RAFT-synthesized (HPMA-s-APMA) copolymers. Biomacromolecules 11:505–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Roggenbuck D, Mytilinaiou MG, Lapin SV et al (2012) Asialoglycoprotein receptor (ASGPR): a peculiar target of liver-specific autoimmunity. Auto Immun Highlights 3:119–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Nishikawa M, Takemura S, Takakura Y et al (1998) Targeted delivery of plasmid DNA to hepatocytes in vivo: optimization of the pharmacokinetics of plasmid DNA/galactosylated poly(L-lysine) complexes by controlling their physicochemical properties. J Pharmacol Exp Ther 287:408–415

    CAS  PubMed  Google Scholar 

  169. Lepenies B, Lee J, Sonkaria S (2013) Targeting C-type lectin receptors with multivalent carbohydrate ligands. Adv Drug Deliv Rev 65:1271–1281

    Article  CAS  PubMed  Google Scholar 

  170. Medina SH, Tekumalla V, Chevliakov MV et al (2011) N-acetylgalactosamine-functionalized dendrimers as hepatic cancer cell-targeted carriers. Biomaterials 32:4118–4129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Rouet R, Thuma BA, Roy MD et al (2018) Receptor-mediated delivery of CRISPR-Cas9 endonuclease for cell-type-specific gene editing. J Am Chem Soc 140:6596–6603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nakagawa O, Ming X, Huang L et al (2010) Targeted intracellular delivery of antisense oligonucleotides via conjugation with small-molecule ligands. J Am Chem Soc 132:8848–8849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Tai W, Li J, Corey E et al (2018) A ribonucleoprotein octamer for targeted siRNA delivery. Nat Biomed Eng 2:326–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lee JB, Zhang K, Tam YYC et al (2016) A Glu-urea-Lys ligand-conjugated lipid nanoparticle/siRNA system inhibits androgen receptor expression in vivo. Mol Ther Nucleic Acids 5:e348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Langut Y, Talhami A, Mamidi S et al (2017) PSMA-targeted polyinosine/polycytosine vector induces prostate tumor regression and invokes an antitumor immune response in mice. Proc Natl Acad Sci U S A 114:13655–13660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Li Y, Xu X-L, Zhao D et al (2015) TLR3 ligand poly IC attenuates reactive astrogliosis and improves recovery of rats after focal cerebral ischemia. CNS Neurosci Ther 21:905–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Chen J, Gamou S, Takayanagi A et al (1994) A novel gene delivery system using EGF receptor-mediated endocytosis. FEBS Lett 338:167–169

    Article  CAS  PubMed  Google Scholar 

  178. Yu H, Nie Y, Dohmen C et al (2011) Epidermal growth factor–PEG functionalized PAMAM-Pentaethylenehexamine dendron for targeted gene delivery produced by click chemistry. Biomacromolecules 12:2039–2047

    Article  CAS  PubMed  Google Scholar 

  179. Shir A, Ogris M, Wagner E et al (2006) EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice. PLoS Med 3:e6

    Article  PubMed  CAS  Google Scholar 

  180. Schaffert D, Kiss M, Rödl W et al (2011) Poly(I:C)-mediated tumor growth suppression in EGF-receptor overexpressing tumors using EGF-polyethylene glycol-linear polyethylenimine as carrier. Pharm Res 28:731–741

    Article  CAS  PubMed  Google Scholar 

  181. Jandl JH, Inman JK, Simmons RL et al (1959) Transfer of iron from serum iron-binding protein to human reticulocytes. J Clin Invest 38:161–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ponka P (2004) Iron and cell proliferation: another piece of the puzzle. Blood 104:2620–2621

    Article  CAS  Google Scholar 

  183. Le NTV, Richardson DR (2002) The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochim Biophys Acta 1603:31–46

    CAS  PubMed  Google Scholar 

  184. Koppu S, Oh YJ, Edrada-Ebel R et al (2010) Tumor regression after systemic administration of a novel tumor-targeted gene delivery system carrying a therapeutic plasmid DNA. J Control Release 143:215–221

    Article  CAS  PubMed  Google Scholar 

  185. Li H, Qian ZM (2002) Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev 22:225–250

    Article  CAS  PubMed  Google Scholar 

  186. Pun SH, Tack F, Bellocq NC et al (2004) Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol Ther 3:641–650

    Article  CAS  PubMed  Google Scholar 

  187. Cardoso ALC, Simões S, de Almeida LP et al (2007) siRNA delivery by a transferrin-associated lipid-based vector: a non-viral strategy to mediate gene silencing. J Gene Med 9:170–183

    Article  CAS  PubMed  Google Scholar 

  188. Tietze N, Pelisek J, Philipp A et al (2008) Induction of apoptosis in murine neuroblastoma by systemic delivery of transferrin-shielded siRNA polyplexes for downregulation of Ran. Oligonucleotides 18:161–174

    Article  CAS  PubMed  Google Scholar 

  189. Yang X, Koh CG, Liu S et al (2009) Transferrin receptor-targeted lipid nanoparticles for delivery of an antisense oligodeoxyribonucleotide against Bcl-2. Mol Pharm 6:221–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Wiley DT, Webster P, Gale A et al (2013) Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc Natl Acad Sci U S A 110:8662–8667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Huang R-Q, Qu Y-H, Ke W-L et al (2007) Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. FASEB J 21:1117–1125

    Article  CAS  PubMed  Google Scholar 

  192. Wei L, Guo X-Y, Yang T et al (2016) Brain tumor-targeted therapy by systemic delivery of siRNA with Transferrin receptor-mediated core-shell nanoparticles. Int J Pharm 510:394–405

    Article  CAS  PubMed  Google Scholar 

  193. Firer MA, Gellerman G (2012) Targeted drug delivery for cancer therapy: the other side of antibodies. J Hematol Oncol 5:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ngamcherdtrakul W, Morry J, Gu S et al (2015) Cationic polymer modified mesoporous silica nanoparticles for targeted SiRNA delivery to HER2+ breast cancer. Adv Funct Mater 25:2646–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wang CY, Huang L (1987) pH-sensitive immunoliposomes mediate target-cell-specific delivery and controlled expression of a foreign gene in mouse. Proc Natl Acad Sci U S A 84:7851–7855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Guo J, Russell EG, Darcy R et al (2017) Antibody-targeted cyclodextrin-based nanoparticles for siRNA delivery in the treatment of acute myeloid leukemia: physicochemical characteristics, in vitro mechanistic studies, and ex vivo patient derived therapeutic efficacy. Mol Pharm 14:940–952

    Article  CAS  PubMed  Google Scholar 

  197. Lee J, Yun K-S, Choi CS et al (2012) T cell-specific siRNA delivery using antibody-conjugated chitosan nanoparticles. Bioconjug Chem 23:1174–1180

    Article  CAS  PubMed  Google Scholar 

  198. Chen Y, Zhu X, Zhang X et al (2010) Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 18:1650–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Bäumer S, Bäumer N, Appel N et al (2015) Antibody-mediated delivery of anti-KRAS-siRNA in vivo overcomes therapy resistance in colon cancer. Clin Cancer Res 21:1383–1394

    Article  PubMed  CAS  Google Scholar 

  200. Di Paolo D, Brignole C, Pastorino F et al (2011) Neuroblastoma-targeted nanoparticles entrapping siRNA specifically knockdown ALK. Mol Ther 19:1131–1140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Song E, Zhu P, Lee S-K et al (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23:709–717

    Article  CAS  PubMed  Google Scholar 

  202. Sugo T, Terada M, Oikawa T et al (2016) Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles. J Control Release 237:1–13

    Article  CAS  PubMed  Google Scholar 

  203. Laroui H, Viennois E, Xiao B et al (2014) Fab’-bearing siRNA TNFα-loaded nanoparticles targeted to colonic macrophages offer an effective therapy for experimental colitis. J Control Release 186:41–53

    Article  CAS  PubMed  Google Scholar 

  204. Gao J, Liu W, Xia Y et al (2011) The promotion of siRNA delivery to breast cancer overexpressing epidermal growth factor receptor through anti-EGFR antibody conjugation by immunoliposomes. Biomaterials 32:3459–3470

    Article  CAS  PubMed  Google Scholar 

  205. Lu H, Wang D, Kazane S et al (2013) Site-specific antibody-polymer conjugates for siRNA delivery. J Am Chem Soc 135:13885–13891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kumar P, Ban H-S, Kim S-S et al (2008) T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 134:577–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Derfus AM, Chen AA, Min D-H et al (2007) Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem 18:1391–1396

    Article  CAS  PubMed  Google Scholar 

  208. Liu Y, Huang R, Han L et al (2009) Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomaterials 30:4195–4202

    Article  CAS  PubMed  Google Scholar 

  209. Ren J, Shen S, Wang D et al (2012) The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials 33:3324–3333

    Article  CAS  PubMed  Google Scholar 

  210. Shao K, Huang R, Li J et al (2010) Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. J Control Release 147:118–126

    Article  CAS  PubMed  Google Scholar 

  211. Gao H, Zhang S, Cao S et al (2014) Angiopep-2 and activatable cell-penetrating peptide dual-functionalized nanoparticles for systemic glioma-targeting delivery. Mol Pharm 11:2755–2763

    Article  CAS  PubMed  Google Scholar 

  212. Huile G, Shuaiqi P, Zhi Y et al (2011) A cascade targeting strategy for brain neuroglial cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 32:8669–8675

    Article  PubMed  CAS  Google Scholar 

  213. Deshane J, Garner CC, Sontheimer H (2003) Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J Biol Chem 278:4135–4144

    Article  CAS  PubMed  Google Scholar 

  214. Veiseh O, Kievit FM, Fang C et al (2010) Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials 31:8032–8042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Costa PM, Cardoso AL, Mendonça LS et al (2013) Tumor-targeted Chlorotoxin-coupled nanoparticles for nucleic acid delivery to glioblastoma cells: a promising system for glioblastoma treatment. Mol Ther Nucleic Acids 2:e100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Kievit FM, Veiseh O, Fang C et al (2010) Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano 4:4587–4594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Huang R, Ke W, Han L et al (2011) Targeted delivery of chlorotoxin-modified DNA-loaded nanoparticles to glioma via intravenous administration. Biomaterials 32:2399–2406

    Article  CAS  PubMed  Google Scholar 

  218. Wei X, Zhan C, Chen X et al (2014) Retro-inverso isomer of Angiopep-2: a stable d-peptide ligand inspires brain-targeted drug delivery. Mol Pharm 11:3261–3268

    Article  CAS  PubMed  Google Scholar 

  219. Wei X, Zhan C, Shen Q et al (2015) A D-peptide ligand of nicotine acetylcholine receptors for brain-targeted drug delivery. Angew Chem Int Ed Engl 127:3066–3070

    Article  Google Scholar 

  220. Li Z, Zhao R, Wu X et al (2005) Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. FASEB J 19:1978–1985

    Article  CAS  PubMed  Google Scholar 

  221. Lo A, Lin C-T, Wu H-C (2008) Hepatocellular carcinoma cell-specific peptide ligand for targeted drug delivery. Mol Cancer Ther 7:579–589

    Article  CAS  PubMed  Google Scholar 

  222. Kortylewski M, Swiderski P, Herrmann A et al (2009) In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat Biotechnol 27:925–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Zhang Q, Hossain DMS, Nechaev S et al (2013) TLR9-mediated siRNA delivery for targeting of normal and malignant human hematopoietic cells in vivo. Blood 121:1304–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Ni X, Castanares M, Mukherjee A et al (2011) Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem 18:4206–4214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Röthlisberger P, Hollenstein M (2018) Aptamer chemistry. Adv Drug Deliv Rev 134:3–21

    Article  PubMed  CAS  Google Scholar 

  227. Liao J, Liu B, Liu J et al (2015) Cell-specific aptamers and their conjugation with nanomaterials for targeted drug delivery. Expert Opin Drug Deliv 12:493–506

    Article  CAS  PubMed  Google Scholar 

  228. Zhu G, Niu G, Chen X (2015) Aptamer-drug conjugates. Bioconjug Chem 26:2186–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Blind M, Blank M (2015) Aptamer selection technology and recent advances. Mol Ther Nucleic Acids 4:e223

    Article  PubMed  PubMed Central  Google Scholar 

  230. Velez TE, Singh J, Xiao Y et al (2012) Systematic evaluation of the dependence of deoxyribozyme catalysis on random region length. ACS Comb Sci 14:680–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Kwon YS, Ahmad Raston NH, Gu MB (2014) An ultra-sensitive colorimetric detection of tetracyclines using the shortest aptamer with highly enhanced affinity. Chem Commun 50:40–42

    Article  CAS  Google Scholar 

  232. Li Y, Geyer CR, Sen D (1996) Recognition of anionic porphyrins by DNA aptamers. Biochemistry 35:6911–6922

    Article  CAS  PubMed  Google Scholar 

  233. Jiang F, Liu B, Lu J et al (2015) Progress and challenges in developing aptamer-functionalized targeted drug delivery systems. Int J Mol Sci 16:23784–23822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Hirao I, Kimoto M, Lee KH (2018) DNA aptamer generation by ExSELEX using genetic alphabet expansion with a mini-hairpin DNA stabilization method. Biochimie 145:15–21

    Article  CAS  PubMed  Google Scholar 

  235. Esposito CL, Cerchia L, Catuogno S et al (2014) Multifunctional aptamer-miRNA conjugates for targeted cancer therapy. Mol Ther 22:1151–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Kim JK, Choi K-J, Lee M et al (2012) Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials 33:207–217

    Article  CAS  PubMed  Google Scholar 

  237. Zhou J, Li H, Li S et al (2008) Novel dual inhibitory function aptamer–siRNA delivery system for HIV-1 therapy. Mol Ther 16:1481–1489

    Article  CAS  PubMed  Google Scholar 

  238. Chu TC, Twu KY, Ellington AD et al (2006) Aptamer mediated siRNA delivery. Nucleic Acids Res 34:e73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Yoon S, Huang K-W, Reebye V et al (2016) Targeted delivery of C/EBPα -saRNA by pancreatic ductal adenocarcinoma (PDAC)-specific RNA aptamers Inhibits tumor growth in vivo. Mol Ther 24(6):1106–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Yoon S, Huang K-W, Reebye V et al (2017) Aptamer-drug conjugates of active metabolites of nucleoside analogs and cytotoxic agents inhibit pancreatic tumor cell growth. Mol Ther Nucleic Acids 6:80–88

    Article  CAS  PubMed  Google Scholar 

  241. Zhou J, Preston Neff C, Swiderski P et al (2013) Functional in vivo delivery of multiplexed anti-HIV-1 siRNAs via a chemically synthesized aptamer with a sticky bridge. Mol Ther 21:192–200

    Article  CAS  PubMed  Google Scholar 

  242. Zhou J, Li H, Zhang J et al (2011) Development of cell-type specific anti-HIV gp120 aptamers for siRNA delivery. In: J Vis Exp

    Google Scholar 

  243. Zhou J, Lazar D, Li H et al (2018) Receptor-targeted aptamer-siRNA conjugate-directed transcriptional regulation of HIV-1. Theranostics 8:1575–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Shangguan D, Li Y, Tang Z et al (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 103:11838–11843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Wu Y, Zhang L, Cui C et al (2018) Enhanced targeted gene transduction: AAV2 vectors conjugated to multiple aptamers via reducible disulfide linkages. J Am Chem Soc 140:2–5

    Article  CAS  PubMed  Google Scholar 

  246. Lakhin AV, Kazakov AA, Makarova AV et al (2012) Isolation and characterization of high affinity aptamers against DNA polymerase iota. Nucleic Acid Ther 22:49–57

    Article  CAS  PubMed  Google Scholar 

  247. Lakhin AV, Tarantul VZ, Gening LV (2013) Aptamers: problems, solutions and prospects. Acta Naturae 5:34–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Catuogno S, Esposito CL (2017) Aptamer cell-based selection: overview and advances. Biomedicines 5(3). pii: E49

    Google Scholar 

  249. Pranatharthiharan S, Patel MD, Malshe VC et al (2017) Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma. Drug Deliv 24:20–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Van Der Heijden JW, Oerlemans R, Dijkmans BAC et al (2009) Folate receptor β as a potential delivery route for novel folate antagonists to macrophages in the synovial tissue of rheumatoid arthritis patients. Arthritis Rheum 60:12–21

    Article  PubMed  CAS  Google Scholar 

  251. Tsuneyoshi Y, Tanaka M, Nagai T et al (2012) Functional folate receptor beta-expressing macrophages in osteoarthritis synovium and their M1/M2 expression profiles. Scand J Rheumatol 41:132–140

    Article  CAS  PubMed  Google Scholar 

  252. Nakashima-Matsushita N, Homma T, Yu S et al (1999) Selective expression of folate receptor β and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis. Arthritis Rheum 42:1609–1616

    Article  CAS  PubMed  Google Scholar 

  253. Parker N, Turk MJ, Westrick E et al (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338:284–293

    Article  CAS  PubMed  Google Scholar 

  254. Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24:971–983

    Article  CAS  PubMed  Google Scholar 

  255. Srinivasarao M, Galliford CV, Low PS (2015) Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov 14:203–219

    Article  CAS  PubMed  Google Scholar 

  256. Maxfield FR, McGraw TE (2004) Endocytic recycling. Nat Rev Mol Cell Biol 5:121–132

    Article  CAS  PubMed  Google Scholar 

  257. Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59:748–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33

    Article  CAS  PubMed  Google Scholar 

  259. Alam MR, Ming X, Fisher M et al (2011) Multivalent cyclic RGD conjugates for targeted delivery of small interfering RNA. Bioconjug Chem 22:1673–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Kong L, Alves CS, Hou W et al (2015) RGD peptide-modified dendrimer-entrapped gold nanoparticles enable highly efficient and specific gene delivery to stem cells. ACS Appl Mater Interfaces 7:4833–4843

    Article  CAS  PubMed  Google Scholar 

  261. Pritchard LK, Spencer DIR, Royle L et al (2015) Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies. Nat Commun 6:7479

    Article  CAS  PubMed  Google Scholar 

  262. Sanders RW, Venturi M, Schiffner L et al (2002) The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120. J Virol 76:7293–7305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Raska M, Takahashi K, Czernekova L et al (2010) Glycosylation patterns of HIV-1 gp120 depend on the type of expressing cells and affect antibody recognition. J Biol Chem 285:20860–20869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Donkor DA, Bhakta V, Eltringham-Smith LJ et al (2017) Selection and characterization of a DNA aptamer inhibiting coagulation factor XIa. Sci Rep 7:2102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Seiwert SD, Stines Nahreini T, Aigner S et al (2000) RNA aptamers as pathway-specific MAP kinase inhibitors. Chem Biol 7:833–843

    Article  CAS  PubMed  Google Scholar 

  266. Zhou J, Rossi JJ, Shum KT (2015) Methods for assembling B-cell lymphoma specific and internalizing aptamer-siRNA nanoparticles via the sticky bridge. Methods Mol Biol 1297:169–185

    Article  CAS  PubMed  Google Scholar 

  267. Chan DPY, Deleavey GF, Owen SC et al (2013) Click conjugated polymeric immuno-nanoparticles for targeted siRNA and antisense oligonucleotide delivery. Biomaterials 34:8408–8415

    Article  CAS  PubMed  Google Scholar 

  268. Taratula O, Garbuzenko OB, Kirkpatrick P et al (2009) Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. J Control Release 140:284–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Kim E, Jung Y, Choi H et al (2010) Prostate cancer cell death produced by the co-delivery of Bcl-xL shRNA and doxorubicin using an aptamer-conjugated polyplex. Biomaterials 31:4592–4599

    Article  CAS  PubMed  Google Scholar 

  270. Kim HA, Nam K, Kim SW (2014) Tumor targeting RGD conjugated bio-reducible polymer for VEGF siRNA expressing plasmid delivery. Biomaterials 35:7543–7552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Wu X, Ding B, Gao J et al (2011) Second-generation aptamer-conjugated PSMA-targeted delivery system for prostate cancer therapy. Int J Nanomed 6:1747–1756

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xia, X., Pollock, N., Zhou, J., Rossi, J. (2019). Tissue-Specific Delivery of Oligonucleotides. In: Gissberg, O., Zain, R., Lundin, K. (eds) Oligonucleotide-Based Therapies. Methods in Molecular Biology, vol 2036. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9670-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9670-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9669-8

  • Online ISBN: 978-1-4939-9670-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics