Skip to main content
Book cover

Microglia pp 127–147Cite as

Replenishment of Organotypic Hippocampal Slice Cultures with Neonatal or Adult Microglia

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2034))

Abstract

This protocol describes a method to deplete and repopulate organotypic hippocampal slice cultures with ramified microglia. We describe the slice culture preparation from newborn mice, standard culturing of neonatal microglia, and the acute isolation of microglia from adult mouse brain. Furthermore, we outline the technique for the replenishment of microglia-depleted slice cultures with different microglia populations and subsequent morphological analysis. We show that neonatal and adult microglia acquire specific ramified morphologies, which in case of adult microglia are indistinguishable from the in vivo situation. This procedure not only allows the functional investigation of microglia with different degrees of ramification but also enables the construction of chimeric slice cultures with respect to the microglia phenotype. Preparation of slice cultures can be completed in 3.5 h, preparation of mixed-glial cultures in 4 h, isolation of adult microglia can be accomplished in 3.5 h, and replenishment in 30 min.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ginhoux F, Greter M, Leboeuf M et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. https://doi.org/10.1126/science.1194637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Prinz M, Mildner A (2011) Microglia in the CNS: immigrants from another world. Glia 59:177–187. https://doi.org/10.1002/glia.21104

    Article  PubMed  Google Scholar 

  3. Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553. https://doi.org/10.1152/physrev.00011.2010

    Article  CAS  PubMed  Google Scholar 

  4. Haynes SE, Hollopeter G, Yang G et al (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9:1512–1519. https://doi.org/10.1038/nn1805

    Article  CAS  PubMed  Google Scholar 

  5. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318. https://doi.org/10.1126/science.1110647

    Article  CAS  PubMed  Google Scholar 

  6. Tremblay M-È, Majewska AK (2011) A role for microglia in synaptic plasticity? Commun Integr Biol 4:220–222. https://doi.org/10.4161/cib.4.2.14506

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sierra A, Encinas JM, Deudero JJP et al (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7:483–495. https://doi.org/10.1016/j.stem.2010.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paolicelli RC, Bolasco G, Pagani F et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458. https://doi.org/10.1126/science.1202529

    Article  CAS  PubMed  Google Scholar 

  9. Schafer DP, Lehrman EK, Stevens B (2013) The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS. Glia 61:24–36. https://doi.org/10.1002/glia.22389

    Article  PubMed  Google Scholar 

  10. Scheffold A, Holtman IR, Dieni S et al (2016) Telomere shortening leads to an acceleration of synucleinopathy and impaired microglia response in a genetic mouse model. Acta Neuropathol Commun 4:87. https://doi.org/10.1186/s40478-016-0364-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spiller KJ, Restrepo CR, Khan T et al (2018) Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nat Neurosci 21:329–340. https://doi.org/10.1038/s41593-018-0083-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hughes V (2012) Microglia: the constant gardeners. Nature 485:570–572. https://doi.org/10.1038/485570a

    Article  CAS  PubMed  Google Scholar 

  13. Hickman SE, Kingery ND, Ohsumi TK et al (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16:1896–1905. https://doi.org/10.1038/nn.3554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Butovsky O, Jedrychowski MP, Moore CS et al (2014) Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143. https://doi.org/10.1038/nn.3599

    Article  CAS  PubMed  Google Scholar 

  15. Gosselin D, Skola D, Coufal NG et al (2017) An environment-dependent transcriptional network specifies human microglia identity. Science 356. https://doi.org/10.1126/science.aal3222

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bohlen CJ, Bennett FC, Tucker AF et al (2017) Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron 94:759–773.e8. https://doi.org/10.1016/j.neuron.2017.04.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bennett FC, Bennett ML, Yaqoob F et al (2018) A Combination of ontogeny and cns environment establishes microglial identity. Neuron 98:1170–1183.e8. https://doi.org/10.1016/j.neuron.2018.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Noraberg J, Poulsen FR, Blaabjerg M et al (2005) Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair. Curr Drug Targets CNS Neurol Disord 4:435–452

    Article  CAS  PubMed  Google Scholar 

  19. Lossi L, Alasia S, Salio C, Merighi A (2009) Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog Neurobiol 88:221–245. https://doi.org/10.1016/j.pneurobio.2009.01.002

    Article  PubMed  Google Scholar 

  20. Harry GJ, Kraft AD (2008) Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin Drug Metab Toxicol 4:1265–1277. https://doi.org/10.1517/17425255.4.10.1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Weering HRJ, Boddeke HWGM, Vinet J et al (2011) CXCL10/CXCR3 signaling in glia cells differentially affects NMDA-induced cell death in CA and DG neurons of the mouse hippocampus. Hippocampus 21:220–232. https://doi.org/10.1002/hipo.20742

    Article  CAS  PubMed  Google Scholar 

  22. Gähwiler BH, Capogna M, Debanne D et al (1997) Organotypic slice cultures: a technique has come of age. Trends Neurosci 20:471–477

    Article  PubMed  Google Scholar 

  23. Bahr BA (1995) Long-term hippocampal slices: a model system for investigating synaptic mechanisms and pathologic processes. J Neurosci Res 42:294–305. https://doi.org/10.1002/jnr.490420303

    Article  CAS  PubMed  Google Scholar 

  24. Kamada M, Li R-Y, Hashimoto M et al (2004) Intrinsic and spontaneous neurogenesis in the postnatal slice culture of rat hippocampus. Eur J Neurosci 20:2499–2508. https://doi.org/10.1111/j.1460-9568.2004.03721.x

    Article  PubMed  Google Scholar 

  25. Raineteau O, Rietschin L, Gradwohl G et al (2004) Neurogenesis in hippocampal slice cultures. Mol Cell Neurosci 26:241–250. https://doi.org/10.1016/j.mcn.2004.01.003

    Article  CAS  PubMed  Google Scholar 

  26. Kreutz S, Koch M, Böttger C et al (2009) 2-Arachidonoylglycerol elicits neuroprotective effects on excitotoxically lesioned dentate gyrus granule cells via abnormal-cannabidiol-sensitive receptors on microglial cells. Glia 57:286–294. https://doi.org/10.1002/glia.20756

    Article  PubMed  Google Scholar 

  27. Van Rooijen N, Sanders A (1994) Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 174:83–93

    Article  PubMed  Google Scholar 

  28. Vinet J, van Weering HRJ, Heinrich A et al (2012) Neuroprotective function for ramified microglia in hippocampal excitotoxicity. J Neuroinflammation 9:27. https://doi.org/10.1186/1742-2094-9-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37:173–182

    Article  CAS  PubMed  Google Scholar 

  30. Howe ML, Barres BA (2012) A novel role for microglia in minimizing excitotoxicity. BMC Biol 10:7. https://doi.org/10.1186/1741-7007-10-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bernardino L, Balosso S, Ravizza T et al (2008) Inflammatory events in hippocampal slice cultures prime neuronal susceptibility to excitotoxic injury: a crucial role of P2X7 receptor-mediated IL-1beta release. J Neurochem 106:271–280. https://doi.org/10.1111/j.1471-4159.2008.05387.x

    Article  CAS  PubMed  Google Scholar 

  32. Masuch A, Shieh C-H, van Rooijen N et al (2016) Mechanism of microglia neuroprotection: involvement of P2X7, TNFα, and valproic acid. Glia 64:76–89. https://doi.org/10.1002/glia.22904

    Article  PubMed  Google Scholar 

  33. Masuch A, van der Pijl R, Füner L et al (2016) Microglia replenished OHSC: a culture system to study in vivo like adult microglia. Glia 64:1285–1297. https://doi.org/10.1002/glia.23002

    Article  PubMed  Google Scholar 

  34. Derecki NC, Cronk JC, Lu Z et al (2012) Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484:105–109. https://doi.org/10.1038/nature10907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mildner A, Mack M, Schmidt H et al (2009) CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain J Neurol 132:2487–2500. https://doi.org/10.1093/brain/awp144

    Article  Google Scholar 

  36. de Haas AH, Boddeke HWGM, Brouwer N, Biber K (2007) Optimized isolation enables ex vivo analysis of microglia from various central nervous system regions. Glia 55:1374–1384. https://doi.org/10.1002/glia.20554

    Article  PubMed  Google Scholar 

  37. Hailer NP, Jarhult JD, Nitsch R (1996) Resting microglial cells in vitro: analysis of morphology and adhesion molecule expression in organotypic hippocampal slice cultures. Glia 18:319–331

    Article  CAS  PubMed  Google Scholar 

  38. Xiang Z, Hrabetova S, Moskowitz SI et al (2000) Long-term maintenance of mature hippocampal slices in vitro. J Neurosci Methods 98:145–154

    Article  CAS  PubMed  Google Scholar 

  39. Hellwig S, Masuch A, Nestel S et al (2015) Forebrain microglia from wild-type but not adult 5xFAD mice prevent amyloid-β plaque formation in organotypic hippocampal slice cultures. Sci Rep 5:14624. https://doi.org/10.1038/srep14624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Masuch, A., Biber, K. (2019). Replenishment of Organotypic Hippocampal Slice Cultures with Neonatal or Adult Microglia. In: Garaschuk, O., Verkhratsky, A. (eds) Microglia. Methods in Molecular Biology, vol 2034. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9658-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9658-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9657-5

  • Online ISBN: 978-1-4939-9658-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics