Skip to main content
Book cover

Phloem pp 95–108Cite as

Live-Cell Imaging of Fluorescently Tagged Phloem Proteins with Confocal Microscopy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2014))

Abstract

Confocal laser scanning microscopy can enable observation of phloem cells in living tissues. Here we describe live imaging of phloem cells in the leaves and roots of Arabidopsis thaliana using fluorescently tagged proteins, either expressed in the vasculature using phloem specific promoters or constitutively expressed reference marker lines. Now, the majority of phloem cell types can be identified, allowing a precise cellular and subcellular localization of phloem proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

CC:

Companion cell

CFP:

Cyan fluorescent protein

GFP:

Green fluorescent protein

PPC:

Phloem parenchyma cell

SE:

Sieve element

YFP:

Yellow fluorescent protein

References

  1. Lucas WJ, Groover A, Lichtenberger R et al (2013) The plant vascular system: Evolution, development and functions. J Integr Plant Biol 55:294–388

    Article  CAS  Google Scholar 

  2. Turnbull CGN, Lopez-Cobollo RM (2013) Heavy traffic in the fast lane: long-distance signalling by macromolecules. New Phytol 198:33–51

    Article  CAS  Google Scholar 

  3. Koroleva OA, Davies A, Deeken R et al (2000) Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol 124:599–608

    Article  CAS  Google Scholar 

  4. Husebye H, Chadchawan S, Winge P et al (2002) Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis. Plant Physiol 128:1180–1188

    Article  CAS  Google Scholar 

  5. Chen L-Q, Qu X-Q, Hou B-H et al (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211

    Article  CAS  Google Scholar 

  6. Le Hir R, Spinner L, Klemens P et al (2015) Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis. Mol Plant 8:1687–1690

    Article  CAS  Google Scholar 

  7. Moison M, Marmagne A, Dinant S et al (2018) Three cytosolic glutamine synthetase isoforms localized in different-order veins act together for N remobilization and seed filling in Arabidopsis. J Exp Bot 69:4379–4393

    Article  CAS  Google Scholar 

  8. Burlat V, Oudin A, Courtois M et al (2004) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derive. Plant J 38:131–141

    Article  CAS  Google Scholar 

  9. Simkin AJ, Miettinen K, Claudel P et al (2013) Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Phytochemistry 85:36–43

    Article  CAS  Google Scholar 

  10. Froelich DR, Mullendore DL, Jensen KH et al (2011) Phloem ultrastructure and pressure flow: Sieve-element-occlusion-related agglomerations do not affect translocation. Plant Cell 23:4428–4445

    Article  CAS  Google Scholar 

  11. Dinant S, Lucas WJ (2013) Sieve elements: puzzling activities deciphered through proteomics studies. In: Thompson GA, van Bel AJE (eds) Phloem biochemistry. Wiley-Blackwell, Hoboken, pp 155–185

    Chapter  Google Scholar 

  12. Knoblauch M, Oparka K (2012) The structure of the phloem - still More questions than answers. Plant J 70:147–156

    Article  CAS  Google Scholar 

  13. Truernit E (2014) Phloem imaging. J Exp Bot 65:1681–1688

    Article  CAS  Google Scholar 

  14. Stadler R, Wright KM, Lauterbach C et al (2005) Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant J 41:319–331

    Article  CAS  Google Scholar 

  15. Thompson MV, Wolniak SM (2008) A plasma membrane-anchored fluorescent protein fusion illuminates sieve element plasma membranes in Arabidopsis and tobacco. Plant Physiol 146:1599–1610

    Article  CAS  Google Scholar 

  16. Anstead JA, Froelich DR, Knoblauch M et al (2012) Arabidopsis P-Protein filament formation requires both AtSEOR1 and AtSEOR2. Plant Cell Physiol 53:1033–1042

    Article  CAS  Google Scholar 

  17. Ross-Elliott TJ, Jensen KH, Haaning KS et al (2017) Phloem unloading in Arabidopsis roots is convective and regulated by the phloem pole pericycle. elife 6:1–31

    Article  Google Scholar 

  18. Cayla T, Batailler B, Le Hir R et al (2015) Live imaging of companion cells and sieve elements in Arabidopsis leaves. PLoS One 10:0118122

    Article  Google Scholar 

  19. Wright KM, Oparka KJ (1996) The fluorescent probe HPTS as a phloem-mobile, symplastic tracer: an evaluation using confocal laser scanning microscopy. J Exp Bot 47:439–445

    Article  CAS  Google Scholar 

  20. Knoblauch M, Vendrell M, de Leau E et al (2015) Multispectral phloem-mobile probes: properties and applications. Plant Physiol 167:1211–1220

    Article  CAS  Google Scholar 

  21. Knox K, Oparka K (2018) Illuminating the translocation stream. Curr Opin Plant Biol 43:113–118

    Article  CAS  Google Scholar 

  22. Oparka KJ, Duckett CM, Prior DAM et al (1994) Real-time imaging of phloem unloading in the root-tip of Arabidopsis. Plant J 6:759–766

    Article  Google Scholar 

  23. Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  CAS  Google Scholar 

  24. Camilleri C, Azimzadeh J, Pastuglia M et al (2002) The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell 14:833–845

    Article  CAS  Google Scholar 

  25. Voigt B, Timmers ACJ, Šamaj J et al (2005) GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. Eur J Cell Biol 84:595–608

    Article  CAS  Google Scholar 

  26. Boisnard-Lorig C (2001) Dynamic analyses of the expression of the HISTONE::YFP fusion protein in Arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell 13:495–509

    Article  CAS  Google Scholar 

  27. Cutler SR, Ehrhardt DW, Griffitts JS et al (2000) Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci 97:3718–3723

    Article  CAS  Google Scholar 

  28. Thomas CL, Bayer EM, Ritzenthaler C et al (2008) Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biol 6:e7

    Article  Google Scholar 

  29. Chisholm ST, Parra MA, Anderberg RJ et al (2001) Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of Tobacco Etch Virus. Plant Physiol 127:1667–1675

    Article  CAS  Google Scholar 

  30. Whitham SA (2000) Arabidopsis RTM2 gene is necessary for specific restriction of Tobacco Etch Virus and encodes an unusual small heat shock-like protein. Plant Cell 12:569–582

    Article  CAS  Google Scholar 

  31. Kloth KJ, Busscher J, Wiegers G et al (2017) SIEVE ELEMENT-LINING CHAPERONE 1 restricts aphid feeding on Arabidopsis during heat stress. Plant Cell 29:2450–2464

    Article  CAS  Google Scholar 

  32. Paultre D (2017), Studies of macromolecular trafficking across Arabidopsis homografts. Danaé Paultre. Doctor of Philosophy. University of Edinburgh

    Google Scholar 

  33. Vida TA, Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128:779–792

    Article  CAS  Google Scholar 

  34. Martens HJ, Roberts AG, Oparka KJ et al (2006) Quantification of plasmodesmatal endoplasmic reticulum coupling between sieve elements and companion cells using fluorescence redistribution after photobleaching. Plant Physiol 142:471–480

    Article  CAS  Google Scholar 

  35. Poot M, Zhang YZ, Krämer JA et al (1996) Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J Histochem Cytochem 44:1363–1372

    Article  CAS  Google Scholar 

  36. Knoblauch M, van BAJE (1998) Sieve tubes in action. Plant Cell 10:35–50

    Article  CAS  Google Scholar 

  37. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco Ttssue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  38. Santoni V, Bellini C, Caboche M (1994) Use of two-dimensional protein-pattern analysis for the characterization of Arabidopsis thaliana mutants. Planta 192:557–566

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The IJPB benefits from the support of the LabEx Saclay Plant Sciences-SPS (ANR-10-LABX-0040-SPS) managed by the French National Research Agency under an “Investments for the Future” program (ref. ANR-11-IDEX-0003-02). We thank the Imaging and Cytology platform of the Plant Observatory (IJPB Institute, INRA Versailles-Grignon, France) for light microscopy observations. TC was supported by a PhD fellowship from Doctoral School ED145 “Sciences du Végétal,” Paris—Sud XI University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Dinant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cayla, T., Le Hir, R., Dinant, S. (2019). Live-Cell Imaging of Fluorescently Tagged Phloem Proteins with Confocal Microscopy. In: Liesche, J. (eds) Phloem. Methods in Molecular Biology, vol 2014. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9562-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9562-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9561-5

  • Online ISBN: 978-1-4939-9562-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics