Skip to main content

Neuroprotection in Traumatic Brain Injury

  • Protocol
  • First Online:
The Handbook of Neuroprotection

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Neuroprotection is important in injuries of the CNS. Immediate damage from the injury may not be reversible but the progression of the chain of events, which aggravate brain damage, can be prevented by an effective strategy for neuroprotection. Two major forms of CNS injury are traumatic brain injury (TBI) and spinal cord injury (SCI), which will be discussed in the following chapter. TBI is the term applied to brain injury caused by external physical trauma. A classification of closed TBI is shown in Table 4.1. A patient with CNS injury may have multiple injuries, which may produce complications in the brain that require neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamson EE, Ikonomovic MD, Dixon CE, DeKosky ST. Simvastatin therapy prevents brain trauma-induced increases in beta-amyloid peptide levels. Ann Neurol 2009;66:407–14.

    Article  CAS  Google Scholar 

  • Ainsley Dean PJ, Arikan G, Opitz B, Sterr A. Potential for use of creatine supplementation following mild traumatic brain injury. Concussion 2017;2(2):CNC34.

    Article  Google Scholar 

  • Busingye DS, Turner RJ, Vink R. Combined Magnesium/Polyethylene Glycol Facilitates the Neuroprotective Effects of Magnesium in Traumatic Brain Injury at a Reduced Magnesium Dose. CNS Neurosci Ther 2016;22:854–9.

    Article  CAS  Google Scholar 

  • Chou A, Krukowski K, Jopson T, et al. Inhibition of the integrated stress response reverses cognitive deficits after traumatic brain injury. Proc Natl Acad Sci U S A 2017;114:E6420-E6426.

    Article  CAS  Google Scholar 

  • Cole JT, Mitala CM, Kundu S, et al. Dietary branched chain amino acids ameliorate injury-induced cognitive impairment. PNAS 2010;107:366–71.

    Google Scholar 

  • Cooper DJ, Rosenfeld JV, Murray L, et al. Decompressive Craniectomy in Diffuse Traumatic Brain Injury. NEJM 2011;364:1493–1502.

    Article  CAS  Google Scholar 

  • Cooper DJ, Nichol AD, Bailey M, et al. Effect of early sustained prophylactic hypothermia on neurological outcomes among patients with severe traumatic brain injury: the POLAR randomized clinical trial. J Am Med Assoc 2018;320:2211–2220.

    Article  Google Scholar 

  • Cox CS, Hetz RA, Liao GP, et al. Treatment of severe adult traumatic brain injury using bone marrow mononuclear cells. Stem Cells 2017;35:1065–1079.

    Article  CAS  Google Scholar 

  • Davis GA, Castellani RJ, McCrory P. Neurodegeneration and sport. Neurosurgery 2015;76:643–56.

    Article  Google Scholar 

  • DeKosky ST, Ikonomovic MD, Gandy S. Traumatic Brain Injury — Football, Warfare, and Long-Term Effects. NEJM 2010;363:1293–1296.

    Article  CAS  Google Scholar 

  • Ding K, Wang H, Wu Y, et al. Rapamycin protects against apoptotic neuronal death and improves neurologic function after traumatic brain injury in mice via modulation of the mTOR-p53-Bax axis. J Surg Res 2015;194:239–47.

    Article  CAS  Google Scholar 

  • D’Onofrio PM, Thayapararajah M, Lysko MD, et al. Gene therapy for traumatic central nervous system injury and stroke using an engineered zinc finger protein that upregulates VEGF-A. J Neurotrauma 2011;28:1863–79.

    Article  Google Scholar 

  • Edwards P, Arango M, Balica L, et al. Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury-outcomes at 6 months. Lancet 2005;365:1957–9.

    Article  Google Scholar 

  • Erdman J, Oria M, Pillsbury L (eds). Nutrition and Traumatic Brain Injury: Improving Acute and Subacute Health Outcomes in Military Personnel. Institute of Medicine, National Academies Press, Washington, DC, 2011.

    Google Scholar 

  • Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis 2007;26:86–93.

    Article  CAS  Google Scholar 

  • Gavett BE, Stern RA, Cantu RC, et al. Mild traumatic brain injury: a risk factor for neurodegeneration. Alzheimers Res Ther 2010;2:18.

    Article  Google Scholar 

  • Giacino GT, Whyte J, Bagiella E, et al. Placebo-Controlled Trial of Amantadine for Severe Traumatic Brain Injury. N Engl J Med 2012;366:819–26.

    Article  CAS  Google Scholar 

  • Guo J, Leung KK, Su H, et al. Self-assembling peptide nanofiber scaffold promotes the reconstruction of acutely injured brain. Nanomedicine 2009;5:345–51.

    Article  CAS  Google Scholar 

  • Harting MT, Baumgartner JE, Worth LL, et al. Cell therapies for traumatic brain injury. Neurosurg Focus 2008;24:E18.

    Article  Google Scholar 

  • Hernandez A, Tan C, Plattner F, et al. Exposure to mild blast forces induces neuropathological effects, neurophysiological deficits and biochemical changes. Molecular Brain 2018;11:64.

    Article  Google Scholar 

  • Hesam S, Khoshkholgh-Sima B, Pourbadie HG, et al. Monophosphoryl Lipid A and Pam3Cys Prevent the Increase in Seizure Susceptibility and Epileptogenesis in Rats Undergoing Traumatic Brain Injury. Neurochem Res 2018;43:1978–1985.

    Article  CAS  Google Scholar 

  • Hoane MR, Pierce JL, Holland MA, Anderson GD. Nicotinamide treatment induces behavioral recovery when administered up to 4 hours following cortical contusion injury in the rat. Neuroscience 2008;154:861–8.

    Article  CAS  Google Scholar 

  • Homsi S, Piaggio T, Croci N, et al. Blockade of acute microglial activation by minocycline promotes neuroprotection and reduces locomotor hyperactivity after closed head injury in mice: a twelve-week follow-up study. J Neurotrauma 2010;27:911–21.

    Article  Google Scholar 

  • Huang XJ, Li WP, Lin Y, et al. Blockage of the upregulation of voltage-gated sodium channel nav1.3 improves outcomes after experimental traumatic brain injury. J Neurotrauma 2014;31:346–57.

    Article  Google Scholar 

  • Hutchison JS, Ward RE, Lacroix J, et al. Hypothermia Therapy after Traumatic Brain Injury in Children. NEJM 2008;358:2447–56.

    Article  CAS  Google Scholar 

  • Hutchinson PJ, Kolias AG, Timofeev IS, et al. Trial of Decompressive Craniectomy for Traumatic Intracranial Hypertension. N Engl J Med 2016;375:1119–30.

    Article  Google Scholar 

  • Jain KK. Neuroprotection in Traumatic Brain Injury. Drug Discovery Today 2008;13:1082–89.

    Article  CAS  Google Scholar 

  • Jain KK. Cell therapy for CNS trauma. Mol Biotechnol 2009;42:367–76.

    Article  CAS  Google Scholar 

  • Jain KK. Regenerative Therapy for Central Nervous System Trauma. In: Steinhoff G, editor. Regenerative Medicine -- from protocol to patient. 3rd ed. London: Springer, 2016.

    Google Scholar 

  • Jain KK. Hyperbaric oxygen therapy in neurosurgery. In, Jain KK. Textbook of Hyperbaric Medicine, 6th ed. Springer, New York 2017.

    Chapter  Google Scholar 

  • Jain KK. Nutrition and the brain. In, Roos RP (ed) MedLink Neurology. Medlink Publishing Corporation, San Diego, California, 2019.

    Google Scholar 

  • Jayakumar AR, Rao KV, Panickar KS, et al. Trauma-Induced Cell Swelling in Cultured Astrocytes. Journal of Neuropathology & Experimental Neurology 2008;67:417–427.

    Article  CAS  Google Scholar 

  • Kabadi SV, Faden AI. Selective CDK inhibitors: promising candidates for future clinical traumatic brain injury trials. Neural Regen Res 2014;9:1578–80.

    Article  Google Scholar 

  • Kochanek PM, Dixon CE, Shellington DK, et al. Screening of biochemical and molecular mechanisms of secondary injury and repair in the brain after experimental blast-induced traumatic brain injury in rats. J Neurotrauma 2013;30:920–37.

    Article  Google Scholar 

  • Lamade AM, Kenny EM, Anthonymuthu TS, et al. Aiming for the target: Mitochondrial drug delivery in traumatic brain injury. Neuropharmacology 2018;145(Pt B):209–219.

    PubMed  Google Scholar 

  • Larsen A, Kolind K, Pedersen DS, et al. Gold ions bio-released from metallic gold particles reduce inflammation and apoptosis and increase the regenerative responses in focal brain injury. Histochem Cell Biol 2008;130:681–92.

    Article  CAS  Google Scholar 

  • Liao ZB, Zhi XG, Shi QH, He ZH. Recombinant human erythropoietin administration protects cortical neurons from traumatic brain injury in rats. Eur J Neurol 2008;15:140–9.

    Article  CAS  Google Scholar 

  • Lima FD, Oliveira MS, Furian AF, et al. Adaptation to oxidative challenge induced by chronic physical exercise prevents Na+,K+-ATPase activity inhibition after traumatic brain injury. Brain Research 2009;1279:147–55.

    Article  CAS  Google Scholar 

  • Loane DJ, Faden AI. Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci 2010;31:596–604.

    Article  CAS  Google Scholar 

  • Loane DJ, Pocivavsek A, Moussa CE, et al. Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury. Nat Med 2009;15:377–9.

    Article  CAS  Google Scholar 

  • Lu J, Frerich JM, Turtzo LC, et al. Histone deacetylase inhibitors are neuroprotective and preserve NGF-mediated cell survival following traumatic brain injury. Proc Natl Acad Sci U S A 2013;110:10747–52.

    Article  CAS  Google Scholar 

  • Ma H, Yu B, Kong L, et al. Transplantation of neural stem cells enhances expression of synaptic protein and promotes functional recovery in a rat model of traumatic brain injury. Mol Med Rep 2011;4:849–56.

    CAS  PubMed  Google Scholar 

  • Marklund N, Bareyre FM, Royo NC, et al. Cognitive outcome following brain injury and treatment with an inhibitor of Nogo-A in association with an attenuated downregulation of hippocampal growth-associated protein-43 expression. J Neurosurg 2007;107:844–53.

    Article  CAS  Google Scholar 

  • McCrory P, Zazryn T, Cameron P. The evidence for chronic traumatic encephalopathy in boxing. Sports Med 2007;37:467–76.

    Article  Google Scholar 

  • McKee AC, Cantu RC, Nowinski CJ, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 2009;68:709–35.

    Article  Google Scholar 

  • McKee AC, Gavett BE, Stern RA, et al. TDP-43 Proteinopathy and Motor Neuron Disease in Chronic Traumatic Encephalopathy. J Neuropathol Exp Neurol 2010;69:918–29.

    Article  CAS  Google Scholar 

  • Mills J, Hadley, Bailes J. Dietary supplementation with the omega-3 fatty acid docosahexaenoic acid in traumatic brain injury. Neurosurgery 2011;68:474–81.

    Article  Google Scholar 

  • Molcanyi M, Riess P, Haj-Yasein NN, et al. Developmental potential of the murine embryonic stem cells transplanted into the healthy rat brain--novel insights into tumorigenesis. Cell Physiol Biochem 2009;24:87–94.

    Article  CAS  Google Scholar 

  • Mountney A, Bramlett HM, Dixon CE, et al. Simvastatin Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. J Neurotrauma 2016;33:567–80.

    Article  Google Scholar 

  • Muroski ME, Morgan TJ Jr, Levenson CW, Strouse GF. A gold nanoparticle pentapeptide: gene fusion to induce therapeutic gene expression in mesenchymal stem cells. J Am Chem Soc 2014;136:14763–71.

    Article  CAS  Google Scholar 

  • Nadler Y, Alexandrovich A, Grigoriadis N, et al. Increased expression of the gamma-secretase components presenilin-1 and nicastrin in activated astrocytes and microglia following traumatic brain injury. Glia 2008;56:552–67.

    Article  Google Scholar 

  • Nyein MK, Jason AM, Yu L, et al. In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury. Proc Natl Acad Sci U S A 2010;107:20703–8.

    Article  CAS  Google Scholar 

  • Perez-Barcena J, Llompart-Pou JA, Homar J, et al. Pentobarbital versus thiopental in the treatment of refractory intracranial hypertension in patients with traumatic brain injury: a randomized controlled trial. Critical Care 2008;12:R112.

    Article  Google Scholar 

  • Rae CD, Broer S. Creatine as a booster for human brain function. How might it work? Neurochem. Int. 2015;89:249–259.

    CAS  Google Scholar 

  • Rezai AR, Sederberg PB, Bogner J, et al. Improved function after deep brain stimulation for chronic, severe traumatic brain injury. Neurosurgery 2016;79:204–11.

    Article  Google Scholar 

  • Rockswold SB, Rockswold GL, Defillo A. Hyperbaric oxygen in traumatic brain injury. Neurol Res 2007;29:162–72.

    Article  Google Scholar 

  • Roehl AB, Hein M, Loetscher PD, et al. Neuroprotective properties of levosimendan in an in vitro model of traumatic brain injury. BMC Neurol 2010;10:97.

    Article  Google Scholar 

  • Sakellaris G, Kotsiou M, Tamiolaki M, et al. Prevention of complications related to traumatic brain injury in children and adolescents with creatine administration: an open label randomized pilot study. J Trauma 2006;61:322–9.

    Article  CAS  Google Scholar 

  • Schiff ND, Giacino JT, Kalmar K, et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 2007;448:600–3.

    Article  CAS  Google Scholar 

  • Seil JT, Webster TJ. Electrically active nanomaterials as improved neural tissue regeneration scaffolds. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010;2:635–47.

    Article  CAS  Google Scholar 

  • Sen AP, Gulati A. Use of magnesium in traumatic brain injury. Neurotherapeutics 2010;7:91–9.

    Article  CAS  Google Scholar 

  • Shakur H, Andrews P, Asser T, et al. The BRAIN TRIAL: a randomised, placebo controlled trial of a Bradykinin B2 receptor antagonist (Anatibant) in patients with traumatic brain injury. Trials 2009;10:109

    Article  Google Scholar 

  • Shear DA, Dixon CE, Bramlett HM, et al. Nicotinamide Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. J Neurotrauma 2016;33:523–37.

    Article  Google Scholar 

  • Shutter LA, Timmons SD. Intracranial Pressure Rescued by Decompressive Surgery after Traumatic Brain Injury. N Engl J Med 2016;375:1183–4.

    Article  Google Scholar 

  • Siddiq I, Park E, Liu E, et al. Treatment of traumatic brain injury using zinc-finger protein gene therapy targeting VEGF-A. J Neurotrauma 2012;29:2647–59.

    Article  Google Scholar 

  • Skolnick BE, Maas AI, Narayan RK, et al. A clinical trial of progesterone for severe traumatic brain injury. N Engl J Med 2014;371:2467–76.

    Article  Google Scholar 

  • Stabenfeldt SE, Irons HR, Laplaca MC. Stem cells and bioactive scaffolds as a treatment for traumatic brain injury. Curr Stem Cell Res Ther 2011;6:208–20.

    Article  CAS  Google Scholar 

  • Stewart W, McNamara PH, Lawlor B, et al. Chronic traumatic encephalopathy: a potential late and under recognized consequence of rugby union? QJM 2016;109:11–15.

    Article  CAS  Google Scholar 

  • Swiatkowski P, Nikolaeva I, Kumar G, et al. Role of Akt-independent mTORC1 and GSK3β signaling in sublethal NMDA-induced injury and the recovery of neuronal electrophysiology and survival. Sci Rep 2017;7:1539.

    Article  Google Scholar 

  • Tate CC, Shear DA, Tate MC, Archer DR, Stein DG, LaPlaca MC. Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. J Tissue Eng Regen Med 2009;3:208–17.

    Article  CAS  Google Scholar 

  • Temkin NR, Anderson GD, Winn HR, et al. Magnesium sulfate for neuroprotection after traumatic brain injury: a randomised controlled trial. Lancet Neurol 2007;6:29–38.

    Article  CAS  Google Scholar 

  • Trabold R, Erös C, Zweckberger K, et al. The role of bradykinin B(1) and B(2) receptors for secondary brain damage after traumatic brain injury in mice. J Cereb Blood Flow Metab 2010;30:130–9.

    Article  CAS  Google Scholar 

  • Wagner AK, Sokoloski JE, Chen X, et al. Controlled cortical impact injury influences methylphenidate-induced changes in striatal dopamine neurotransmission. J Neurochem 2009;110:801–10.

    Article  CAS  Google Scholar 

  • Webber MJ, Kessler JA, Stupp SI. Emerging peptide nanomedicine to regenerate tissues and organs. J Intern Med 2010;267:71–88.

    Article  CAS  Google Scholar 

  • Wu H, Lu D, Jiang H, et al. Increase in phosphorylation of Akt and its downstream signaling targets and suppression of apoptosis by simvastatin after traumatic brain injury. J Neurosurg 2008;109:691–8.

    Article  CAS  Google Scholar 

  • Xia Y, Hu P, Leak RK, et al. Tissue plasminogen activator promotes white matter integrity and functional recovery in a murine model of traumatic brain injury. Proc Natl Acad Sci U S A 2018;115:E9230-E9238.

    Article  Google Scholar 

  • Xiong Y, Zhang Y, Mahmood A, Chopp M. Investigational agents for treatment of traumatic brain injury. Expert Opin Investig Drugs 2015;24:743–60.

    Article  CAS  Google Scholar 

  • Yang Y, Ye Y, Su X, et al. MSCs-derived exosomes and neuroinflammation, neurogenesis and therapy of traumatic brain injury. Front Cell Neurosci 2017;11:55.

    PubMed  PubMed Central  Google Scholar 

  • Zheng ZL, Morykwas M, Campbell D, et al. Mechanical tissue resuscitation at the site of traumatic brain injuries reduces the volume of injury and hemorrhage in a Swine model. Neurosurgery 2014;75:152–62.

    Article  Google Scholar 

  • Zhou Z, Sun D, Levasseur JE, et al. Perfluorocarbon emulsions improve cognitive recovery after lateral fluid percussion brain injury in rats. Neurosurgery 2008;63:799–807.

    Article  Google Scholar 

  • Zhu W, Ding Y, Kong W, et al. Docosahexaenoic Acid (DHA) Provides Neuroprotection in Traumatic Brain injury Models via Activating Nrf2-ARE Signaling. Inflammation 2018;41:1182–1193.

    Article  CAS  Google Scholar 

  • Zweckberger K, Plesnila N. Anatibant, a selective non-peptide bradykinin B2 receptor antagonist, reduces intracranial hypertension and histopathological damage after experimental traumatic brain injury. Neurosci Lett 2009;454:115–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jain, K.K. (2019). Neuroprotection in Traumatic Brain Injury. In: The Handbook of Neuroprotection. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9465-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9465-6_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9464-9

  • Online ISBN: 978-1-4939-9465-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics