Skip to main content

Quantitative Imaging of Endogenous and Exogenous H2O2 Gradients in Live Zebrafish Larvae

  • Protocol
  • First Online:
  • 2457 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1982))

Abstract

Quantitative aspects of extracellular H2O2 signaling in animals, such as its spatiotemporal dynamics within tissues, remain little understood. Here we detail an optimized, experimental setup for measuring the dynamics and physiological consequences of extracellular H2O2 application to live tissues by intravital biosensor imaging in zebrafish larvae.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Niethammer P, Grabher C, Look AT, Mitchison TJ (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459(7249):996–999

    Article  CAS  Google Scholar 

  2. Razzell W, Evans IR, Martin P, Wood W (2013) Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release. Curr Biol 23(5):424–429

    Article  CAS  Google Scholar 

  3. Yoo SK, Starnes TW, Deng Q, Huttenlocher A (2011) Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480(7375):109–112

    Article  CAS  Google Scholar 

  4. Yoo SK, Freisinger CM, LeBert DC, Huttenlocher A (2012) Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish. J Cell Biol 199(2):225–234

    Article  CAS  Google Scholar 

  5. Rieger S, Sagasti A (2011) Hydrogen peroxide promotes injury-induced peripheral sensory axon regeneration in the zebrafish skin. PLoS Biol 9(5):e1000621

    Article  CAS  Google Scholar 

  6. Suzuki N, Mittler R (2012) Reactive oxygen species-dependent wound responses in animals and plants. Free Radic Biol Med 53(12):2269–2276

    Article  CAS  Google Scholar 

  7. Moreira S, Stramer B, Evans I, Wood W, Martin P (2010) Prioritization of competing damage and developmental signals by migrating macrophages in the Drosophila embryo. Curr Biol 20(5):464–470

    Article  CAS  Google Scholar 

  8. Enyedi B, Niethammer P (2013) H2O2: a chemoattractant? Methods Enzymol 528:237–255

    Article  CAS  Google Scholar 

  9. Enyedi B, Niethammer P (2015) Mechanisms of epithelial wound detection. Trends Cell Biol 25(7):398–407

    Article  CAS  Google Scholar 

  10. Niethammer P (2016) The early wound signals. Curr Opin Genet Dev 40:17–22

    Article  CAS  Google Scholar 

  11. Love NR, Chen Y, Ishibashi S, Kritsiligkou P, Lea R, Koh Y et al (2013) Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol 15(2):222–228

    Article  CAS  Google Scholar 

  12. Poole LB (2015) The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med 80:148–157

    Article  CAS  Google Scholar 

  13. Stöcker S, Van Laer K, Mijuskovic A, Dick TP (2018) The conundrum of H2O2 signaling and the emerging role of peroxiredoxins as redox relay hubs. Antioxid Redox Signal 28(7):558–573

    Article  Google Scholar 

  14. Redd MJ, Cooper L, Wood W, Stramer B, Martin P (2004) Wound healing and inflammation: embryos reveal the way to perfect repair. Philos Trans R Soc Lond B Biol Sci 359(1445):777–784

    Article  CAS  Google Scholar 

  15. Trede NS, Langenau DM, Traver D, Look AT, Zon LI (2004) The use of zebrafish to understand immunity. Immunity 20(4):367–379

    Article  CAS  Google Scholar 

  16. Bennett CM, Kanki JP, Rhodes J, Liu TX, Paw BH, Kieran MW et al (2001) Myelopoiesis in the zebrafish, Danio rerio. Blood 98(3):643–651

    Article  CAS  Google Scholar 

  17. Enyedi B, Kala S, Nikolich-Zugich T, Niethammer P (2013) Tissue damage detection by osmotic surveillance. Nat Cell Biol 15(9):1123–1130

    Article  CAS  Google Scholar 

  18. Jelcic M, Enyedi B, Xavier JB, Niethammer P (2017) Image-based measurement of H2O2 reaction-diffusion in wounded zebrafish larvae. Biophys J 112(9):2011–2018

    Article  CAS  Google Scholar 

  19. Gault WJ, Enyedi B, Niethammer P (2014) Osmotic surveillance mediates rapid wound closure through nucleotide release. J Cell Biol 207(6):767–782

    Article  CAS  Google Scholar 

  20. Enyedi B, Jelcic M, Niethammer P (2016) The cell nucleus serves as a mechanotransducer of tissue damage-induced inflammation. Cell 165(5):1160–1170

    Article  CAS  Google Scholar 

  21. Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, Parant JM, Yost HJ, Kanki JP, Chien CB (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236(11):3088–3089

    Article  CAS  Google Scholar 

  22. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3(4):281–286

    Article  CAS  Google Scholar 

  23. Pase L, Layton JE, Wittmann C, Ellett F, Nowell CJ, Reyes-Aldasoro CC, Varma S, Rogers KL, Hall CJ, Keightley MC, Crosier PS, Grabher C, Heath JK, Renshaw SA, Lieschke GJ (2012) Neutrophil-delivered myeloperoxidase dampens the hydrogen peroxide burst after tissue wounding in zebrafish. Curr Biol 22(19):1818–1824

    Article  CAS  Google Scholar 

  24. Gauron C, Meda F, Dupont E, Albadri S, Quenech’Du N, Ipendey E, Volovitch M, Del Bene F, Joliot A, Rampon C, Vriz S (2016) Hydrogen peroxide (H2O2) controls axon pathfinding during zebrafish development. Dev Biol 414(2):133–141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research was supported by the NIH/NIGMS grant R01GM099970, an American Asthma Foundation Scholar award to PN, the MSKCC Functional Genome Initiative, and in part through the NIH/NCI Cancer Center Support grant P30CA008748.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Niethammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jelcic, M., Enyedi, B., Niethammer, P. (2019). Quantitative Imaging of Endogenous and Exogenous H2O2 Gradients in Live Zebrafish Larvae. In: Knaus, U., Leto, T. (eds) NADPH Oxidases. Methods in Molecular Biology, vol 1982. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9424-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9424-3_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9423-6

  • Online ISBN: 978-1-4939-9424-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics