Skip to main content

Rapid and Sensitive Determination of Branched-Chain Amino Acids in Human Plasma by Capillary Electrophoresis with Contactless Conductivity Detection for Physiological Studies

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1972))

Abstract

Capillary electrophoresis (CE) with contactless conductivity detection (C4D) represents a strong tool for determining amino acids in clinical samples. This chapter provides detailed instructions for CE/C4D determination of the branched-chain amino acids (BCAAs) valine, isoleucine, and leucine in human plasma, which can be readily employed in physiological studies. Baseline separation of all the BCAAs is achieved on a short separation length equal to 18 cm in optimized background electrolyte consisting of 3.2 M acetic acid dissolved in 20% v/v methanol with addition of 1.0% v/v INST-coating solution. The analysis time does not exceed 3 min and the limit of detection is 0.4 μM for all BCAAs. The pretreatment of human plasma is very simple and is based on fourfold plasma dilution by acetonitrile and subsequent filtration. Only 50 μL of plasma is used for the analysis. The high sensitivity of the CE/C4D method is achieved by injecting a large volume of sample, combined with application of negative pressure to flush the acetonitrile zone out of the capillary.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Singh BK, Shaner DL (1995) Biosynthesis of branched-chain amino-acids - from test-tube to field. Plant Cell 7(7):935–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Murray RK, Bender DA, Botham KM, Kennelly PJ, Rodwell VW, Weil PA (2007) Harper’s illustrated biochemistry, Chapter 28 and 33., 29th edn. McGraw-Hill Lange, China

    Google Scholar 

  3. Adeva MM, Calvino J, Souto G, Donapetry C (2012) Insulin resistance and the metabolism of branched-chain amino acids in humans. Amino Acids 43(1):171–181

    Article  CAS  PubMed  Google Scholar 

  4. Devlin TM (1992) Biochemistry with clinical correlations. Wiley-Liss, New York

    Google Scholar 

  5. Tazi EM, Errihani H (2010) Treatment of cachexia in oncology. Indian J Palliat Care 16(3):129–137

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O’Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17(4):448–U483

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hušek P, Šimek P, Hartvich P, Zahradníčková H (2008) Fluoroalkyl chloroformates in treating amino acids for gas chromatographic analysis. J Chromatogr A 1186(1–2):391–400

    Article  PubMed  Google Scholar 

  8. Kand’ár R, Žaková P, Jirošová J, Sladká M (2009) Determination of branched chain amino acids, methionine, phenylalanine, tyrosine and alpha-keto acids in plasma and dried blood samples using HPLC with fluorescence detection. Clin Chem Lab Med 47(5):565–572

    PubMed  Google Scholar 

  9. Sharma G, Attri SV, Behra B, Bhisikar S, Kumar P, Tageja M, Sharda S, Singhi P, Singhi S (2014) Analysis of 26 amino acids in human plasma by HPLC using AQC as derivatizing agent and its application in metabolic laboratory. Amino Acids 46(5):1253–1263

    Article  CAS  PubMed  Google Scholar 

  10. Kubáň P, Hauser PC (2017) Contactless conductivity detection for analytical techniques developments from 2014 to 2016. Electrophoresis 38(1):95–114

    Article  PubMed  Google Scholar 

  11. Kubáň P, Hauser PC (2015) Contactless conductivity detection for analytical techniques-developments from 2012 to 2014. Electrophoresis 36(1):195–211

    Article  PubMed  Google Scholar 

  12. Kubáň P, Hauser PC (2013) Contactless conductivity detection for analytical techniques: developments from 2010 to 2012. Electrophoresis 34(1):55–69

    Article  PubMed  Google Scholar 

  13. Coufal P, Zuska J, van de Goor T, Smith V, Gaš B (2003) Separation of twenty underivatized essential amino acids by capillary zone electrophoresis with contactless conductivity detection. Electrophoresis 24(4):671–677

    Article  CAS  PubMed  Google Scholar 

  14. Tůma P, Málková K, Samcová E, Štulík K (2010) Rapid monitoring of arrays of amino acids in clinical samples using capillary electrophoresis with contactless conductivity detection. J Sep Sci 33(16):2394–2401

    Article  PubMed  Google Scholar 

  15. Tůma P, Gojda J (2015) Rapid determination of branched chain amino acids in human blood plasma by pressure-assisted capillary electrophoresis with contactless conductivity detection. Electrophoresis 36(16):1969–1975

    Article  PubMed  Google Scholar 

  16. Tůma P, Jaček M, Fejfarová V, Polák J (2016) Electrophoretic stacking for sensitive determination of antibiotic ceftazidime in human blood and microdialysates from diabetic foot. Anal Chim Acta 942:139–145

    Article  PubMed  Google Scholar 

  17. Guder WG, Narayanan S, Wisser H, Zawta B (2009) Diagnostic samples: from the patient to the laboratory. Wiley-VCH, Weinheim

    Google Scholar 

  18. Lauer HH, Rozing GP (2010) High performance capillary electrophoresis. Agilent Technologies, Germany

    Google Scholar 

  19. Tůma P (2014) Rapid determination of globin chains in red blood cells by capillary electrophoresis using INSTCoated fused-silica capillary. J Sep Sci 37(8):1026–1032

    Article  PubMed  Google Scholar 

  20. Křivánková L, Pantůčková P, Boček P (1999) Isotachophoresis in zone electrophoresis. J Chromatogr A 838(1–2):55–70

    Article  Google Scholar 

  21. Kubáň P, Hauser PC (2009) Ten years of axial capacitively coupled contactless conductivity detection for CZE - a review. Electrophoresis 30(1):176–188

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant Agency of the Czech Republic, Grant No. 18-04902S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Tůma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tůma, P. (2019). Rapid and Sensitive Determination of Branched-Chain Amino Acids in Human Plasma by Capillary Electrophoresis with Contactless Conductivity Detection for Physiological Studies. In: Phillips, T.M. (eds) Clinical Applications of Capillary Electrophoresis. Methods in Molecular Biology, vol 1972. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9213-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9213-3_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9212-6

  • Online ISBN: 978-1-4939-9213-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics