Skip to main content

High-Quality Data of Protein/Peptide Interaction by Isothermal Titration Calorimetry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1964))

Abstract

Despite the emergence of high-throughput interaction methods within the last decade, there is still a strong need for careful and accurate measurements of affinities and thermodynamic parameters of single interactions in order to fully dissect the mechanisms of binding. To this end, isothermal titration calorimetry (ITC) is a well-established and convenient label-free technique covering a broad range of affinities.

This review describes the careful use of ITC in the context of protein/peptide interaction in order to measure thermodynamic parameters of the binding with high accuracy and reproducibility. The relative medium-to-low affinities often encountered for protein/peptide binding imply to increase the concentration of the peptide and/or the protein, making the sample quality and data acquisition all the more critical. This chapter emphasizes more specifically the relevance of those points to improve the reproducibility of ITC measurements and to gain high-quality thermodynamic parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sidhu SS, Fairbrother WJ, Deshayes K (2003) Exploring protein/protein interactions with phage display. Chembiochem 4:15–25

    Google Scholar 

  2. Aebersold R, Mann M (2016) Mass-spectrometry exploration of proteome structure and function. Nature 537:347–355

    Article  CAS  Google Scholar 

  3. Cassonnet P, Rolloy C, Jacob Y (2011) Benchmarking a luciferase complementation assay for detecting protein complexes. Nat Methods 8:990–992

    Article  CAS  Google Scholar 

  4. Vincentelli R, Luck K, Travé …G (2015) Quantifying domain-ligand affinities and specificities by high-throughput holdup assay. Nat Methods 12:787–793

    Article  CAS  Google Scholar 

  5. Huibregtse JONM, Scheffner M, Howley PM (1993) Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol Cell Biol 13:4918–4927

    Article  CAS  Google Scholar 

  6. Zanier K, M’Hamed Ould Sidi AO, Travé G (2012) Solution structure analysis of the HPV16 E6 oncoprotein reveals a self-association mechanism required for E6-mediated degradation of p53. Structure 20:604–617

    Article  CAS  Google Scholar 

  7. Zanier K, Nominé Y, Travé …G (2007) Formation of well-defined soluble aggregates upon fusion to MBP is a generic property of E6 proteins from various human papillomavirus species. Protein Expr Purif 51:59–70

    Article  CAS  Google Scholar 

  8. Roux S, Zekri E, Fay N (2008) Elimination and exchange of trifluoroacetate counter-ion from cationic peptides: a critical evaluation of different approaches. J Pept Sci 14:354–359

    Article  CAS  Google Scholar 

  9. Andruschchenko V, Vogel H, Prenner E (2007) Optimization of the hydrochloric acid concentration used for trifluoroacetate removal from synthetic peptides. J Pept Sci 13:37–43

    Article  Google Scholar 

  10. Wider G, Dreier L (2006) Measuring protein concentrations by NMR spectroscopy. J Am Chem Soc 128:2571–2576

    Article  CAS  Google Scholar 

  11. Anthis NJ, Clore GM (2013) Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm. Protein Sci 22:851–858

    Article  CAS  Google Scholar 

  12. Wiseman T, Williston S, Lin …L-N (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179:131–137

    Article  CAS  Google Scholar 

  13. Broecker J, Vargas C, Keller S (2011) Revisiting the optimal c value for isothermal titration calorimetry. Anal Biochem 418:307–309

    Article  CAS  Google Scholar 

  14. Schwarz FP, Reinisch T, Surolia …A (2008) Recommendations on measurement and analysis of results obtained on biological substances using isothermal titration calorimetry (IUPAC Technical Report). Pure Appl Chem 80:2025–2040

    Article  CAS  Google Scholar 

  15. Myszka DG (1999) Improving biosensor analysis. J Mol Recognit 12:279–284

    Article  CAS  Google Scholar 

  16. Han JC, Han GY (1994) A procedure for quantitative determination of Tris(2-carboxyethyl)phosphine, an odorless reducing agent more stable and effective than dithiothreitol. Anal Biochem 220:5–10

    Article  CAS  Google Scholar 

  17. Little MJ, Aubry N, Laplante …SR (2007) Quantifying trifluoroacetic acid as a counterion in drug discovery by 19 F NMR and capillary electrophoresis. J Pharm Biomed Anal 43:1324–1330

    Article  CAS  Google Scholar 

  18. Turnbull WB, Daranas AH (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 125:14859–14866

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Association pour la Recherche contre le Cancer (ARC) (no. 3171), and the Agence Nationale de la Recherche (ANR- MIME-2007 EPI-HPV-3D). J.R. was financially supported by ANR. We warmly thank Georges Mer for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Nominé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ramirez, J., Nominé, Y. (2019). High-Quality Data of Protein/Peptide Interaction by Isothermal Titration Calorimetry. In: Ennifar, E. (eds) Microcalorimetry of Biological Molecules. Methods in Molecular Biology, vol 1964. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9179-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9179-2_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9178-5

  • Online ISBN: 978-1-4939-9179-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics