Skip to main content

An Improved Approach to Trypanosoma cruzi Molecular Genotyping by Next-Generation Sequencing of the Mini-exon Gene

  • Protocol
  • First Online:
T. cruzi Infection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1955))

Abstract

Trypanosoma cruzi, the etiological agent of Chagas disease, is a protozoan parasite usually transmitted by triatomines. As the parasite can infect all mammals and the vectors can be found across a broad range of ecologies, transmission cycles are quite complex, and extensive genetic diversity exists within the parasite population. Seven main evolutionary lineages, named “discrete typing units,” have been described, but a large amount of intra-lineage heterogeneity is also observed. To date, typing methods used to elucidate both inter-lineage and intra-lineage diversity have faced limitations, with some approaches unable to determine all levels of diversity and others requiring investigation of numerous markers and often the selective process of isolation of live parasites. Here, we present a method for parasite genotyping using next-generation sequencing of the mini-exon gene marker, to assign lineage and describe intra-lineage diversity directly from biological samples. This approach is sensitive enough to detect the presence of multiclonal infections and low-frequency parasite genotypes within this context, providing an unprecedented description of T. cruzi assemblages in hosts and vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Noireau F, Dujardin J-P (2010) Biology of Triatominae. In: Telleria J, Tibayrenc M (eds) American trypanosomiasis Chagas disease: one hundred years of research. Elsevier, London, pp 149–164

    Chapter  Google Scholar 

  2. Tibayrenc M, Ayala FJ (2015) The population genetics of Trypanosoma cruzi revisited in the light of the predominant clonal evolution model. Acta Trop 151:156–165. https://doi.org/10.1016/j.actatropica.2015.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, Teixeira MMG, Schijman AG, Llewellyn MS, Lages-Silva E, Machado CR, Andrade SG, Sturm NR (2012) The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 12(2):240–253. https://doi.org/10.1016/j.meegid.2011.12.009

    Article  PubMed  Google Scholar 

  4. Marcili A, Lima L, Cavazzana M, Junqueira ACV, Veludo HH, Maia Da Silva F, Campaner M, Paiva F, Nunes VLB, Teixeira MMG (2009) A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and Histone H2B genes and genotyping based on ITS1 rDNA. Parasitology 136(6):641–655. https://doi.org/10.1017/S0031182009005861

    Article  CAS  PubMed  Google Scholar 

  5. Ramírez JD, Hernández C, Montilla M, Zambrano P, Flórez AC, Parra E, Cucunubá ZM (2013) First report of human Trypanosoma cruzi infection attributed to TcBat genotype. Zoonoses Public Health 61(7):477–479. https://doi.org/10.1111/zph.12094

    Article  PubMed  Google Scholar 

  6. Cura CI, Mejía-Jaramillo AM, Duffy T, Burgos JM, Rodriguero M, Cardinal MV, Kjos S, Gurgel-Gonçalves R, Blanchet D, De Pablos LM, Tomasini N, da Silva A, Russomando G, Cuba CAC, Aznar C, Abate T, Levin MJ, Osuna A, Gürtler RE, Diosque P, Solari A, Triana-Chávez O, Schijman AG (2010) Trypanosoma cruzi I genotypes in different geographical regions and transmission cycles based on a microsatellite motif of the intergenic spacer of spliced-leader genes. Int J Parasitol 40(14):1599–1607. https://doi.org/10.1016/j.ijpara.2010.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Falla A, Herrera C, Fajardo A, Montilla M, Vallejo GA, Guhl F (2009) Haplotype identification within Trypanosoma cruzi I in Colombian isolates from several reservoirs, vectors and humans. Acta Trop 110(1):15–21. https://doi.org/10.1016/j.actatropica.2008.12.003

    Article  CAS  PubMed  Google Scholar 

  8. Herrera C, Bargues MD, Fajardo A, Montilla M, Triana O, Vallejo GA, Guhl F (2007) Identifying four Trypanosoma cruzi I isolate haplotypes from different geographic regions in Colombia. Infect Genet Evol 7(4):535–539. https://doi.org/10.1016/j.meegid.2006.12.003

    Article  CAS  PubMed  Google Scholar 

  9. Macedo AM, Oliveira RP, Pena SDJ (2002) Chagas disease: role of parasite genetic variation in pathogenesis. Expert Rev Mol Med 4(5):1–16. https://doi.org/10.1017/S1462399402004118

    Article  PubMed  Google Scholar 

  10. Herrera CP, Licon MH, Nation CS, Jameson SB, Wesson DM (2015) Genotype diversity of Trypanosoma cruzi in small rodents and Triatoma sanguisuga from a rural area in New Orleans, Louisiana. Parasit Vectors 8:123. https://doi.org/10.1186/s13071-015-0730-8

    Article  PubMed  PubMed Central  Google Scholar 

  11. Perez CJ, Lymbery AJ, Thompson RCA (2014) Chagas disease: the challenge of polyparasitism? Trends Parasitol 30(4):176–182. https://doi.org/10.1016/j.pt.2014.01.008

    Article  PubMed  Google Scholar 

  12. Dumonteil E, Ramirez-Sierra MJ, Pérez-Carrillo S, Teh-Poot C, Herrera C, Gourbière S, Waleckx E (2018) Detailed ecological associations of triatomines revealed by metabarcoding based on next-generation sequencing: linking triatomine behavioral ecology and Trypanosoma cruzi transmission cycles. Sci Rep 8(1):4140. https://doi.org/10.1038/s41598-018-22455-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Souto RP, Fernandes O, Macedo AM, Campbell DA, Zingales B (1996) DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol Biochem Parasitol 83(2):141–152. https://doi.org/10.1016/S0166-6851(96)02755-7

    Article  CAS  PubMed  Google Scholar 

  14. Messenger LA, Miles MA, Bern C (2015) Between a bug and a hard place: Trypanosoma cruzi genetic diversity and the clinical outcomes of Chagas disease. Expert Rev Anti-Infect Ther 13(8):995–1029. https://doi.org/10.1586/14787210.2015.1056158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Steindel M, Neto ED, de Menezes CLP, Romanha AJ, Simpson AJG (1993) Random amplified polymorphic DNA analysis of Trypanosoma cruzi strains. Mol Biochem Parasitol 60(1):71–79. https://doi.org/10.1016/0166-6851(93)90030-2

    Article  CAS  PubMed  Google Scholar 

  16. Yeo M, Mauricio IL, Messenger LA, Lewis MD, Llewellyn MS, Acosta N, Bhattacharyya T, Diosque P, Carrasco HJ, Miles MA (2011) Multilocus sequence typing (MLST) for lineage assignment and high resolution diversity studies in Trypanosoma cruzi. PLoS Negl Trop Dis 5(6):e1049

    Article  PubMed  PubMed Central  Google Scholar 

  17. Roman F, Iñiguez AM, Yeo M, Jansen AM (2018) Multilocus sequence typing: genetic diversity in Trypanosoma cruzi I (TcI) isolates from Brazilian didelphids. Parasit Vectors 11(1):107. https://doi.org/10.1186/s13071-018-2696-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roman F, das Chagas Xavier S, Messenger LA, Pavan MG, Miles MA, Jansen AM, Yeo M (2018) Dissecting the phyloepidemiology of Trypanosoma cruzi I (TcI) in Brazil by the use of high resolution genetic markers. PLoS Negl Trop Dis 12(5):e0006466

    Article  PubMed  PubMed Central  Google Scholar 

  19. Messenger LA, Llewellyn MS, Bhattacharyya T, Franzén O, Lewis MD, Ramírez JD, Carrasco HJ, Andersson B, Miles MA (2012) Multiple mitochondrial introgression events and heteroplasmy in Trypanosoma cruzi revealed by maxicircle MLST and next generation sequencing. PLoS Negl Trop Dis 6(4):e1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Llewellyn MS, Miles MA, Carrasco HJ, Lewis MD, Yeo M, Vargas J, Torrico F, Diosque P, Valente V, Valente SA, Gaunt MW (2009) Genome-scale multilocus microsatellite typing of Trypanosoma cruzi discrete typing unit I reveals phylogeographic structure and specific genotypes linked to human infection. PLoS Pathog 5(5):e1000410

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lima VS, Jansen AM, Messenger LA, Miles MA, Llewellyn MS (2014) Wild Trypanosoma cruzi I genetic diversity in Brazil suggests admixture and disturbance in parasite populations from the Atlantic Forest region. Parasit Vectors 7:263–263. https://doi.org/10.1186/1756-3305-7-263

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bartholomeu DC, Buck GA, Teixeira SMR, El-Sayed NMA (2010) Genetics of Trypanosoma cruzi: nuclear genome. In: Telleria J, Tibayrenc M (eds) American trypanosomiasis Chagas disease: one hundred years of research. Elsevier, London, pp 443–448

    Google Scholar 

  23. Cribb P, Tapia E, Diosque P, Serra E (2004) Spliced leader RNA gene promoter sequence heterogeneity in CL-Brener Trypanosoma cruzi reference strain. Infect Genet Evol 4(2):153–157. https://doi.org/10.1016/j.meegid.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  24. Fernandes O, Sturm NR, Derré R, Campbell DA (1998) The mini-exon gene: a genetic marker for zymodeme III of Trypanosoma cruzi. Mol Biochem Parasitol 95(1):129–133. https://doi.org/10.1016/S0166-6851(98)00073-5

    Article  CAS  PubMed  Google Scholar 

  25. Garcia MN, Burroughs H, Gorchakov R, Gunter SM, Dumonteil E, Murray KO, Herrera CP (2017) Molecular identification and genotyping of Trypanosoma cruzi DNA in autochthonous Chagas disease patients from Texas, USA. Infect Genet Evol 49:151–156. https://doi.org/10.1016/j.meegid.2017.01.016

    Article  CAS  PubMed  Google Scholar 

  26. McCarthy-Burke C, Taylor ZA, Buck GA (1989) Characterization of the spliced leader genes and transcripts in Trypanosoma cruzi. Gene 82(1):177–189. https://doi.org/10.1016/0378-1119(89)90043-7

    Article  CAS  PubMed  Google Scholar 

  27. Fernandas O, Santos SS, Cupolillo E, Mendonça B, Derre R, Junqueira ACV, Santos LC, Sturm NR, Naiff RD, Barret TV, Campbell DA, Coura JR (2001) A mini-exon multiplex polymerase chain reaction to distinguish the major groups of Trypanosoma cruzi and T. rangeli in the Brazilian Amazon. Trans R Soc Trop Med Hyg 95(1):97–99. https://doi.org/10.1016/S0035-9203(01)90350-5

    Article  Google Scholar 

  28. Aliaga C, Brenière SF, Barnabé C (2011) Further interest of miniexon multiplex PCR for a rapid typing of Trypanosoma cruzi DTU groups. Infect Genet Evol 11(5):1155–1158. https://doi.org/10.1016/j.meegid.2010.11.013

    Article  CAS  PubMed  Google Scholar 

  29. Tomasini N, Lauthier JJ, Rumi MMM, Ragone PG, D’Amato AAA, Brandan CP, Cura CI, Schijman AG, Barnabé C, Tibayrenc M, Basombrío MA, Falla A, Herrera C, Guhl F, Diosque P (2011) Interest and limitations of Spliced Leader Intergenic Region sequences for analyzing Trypanosoma cruzi I phylogenetic diversity in the Argentinean Chaco. Infect Genet Evol 11(2):300–307. https://doi.org/10.1016/j.meegid.2010.10.020

    Article  CAS  PubMed  Google Scholar 

  30. Moser DR, Kirchhoff LV, Donelson JE (1989) Detection of Trypanosoma cruzi by DNA amplification using the polymerase chain reaction. J Clin Microbiol 27:1477–1482

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Dumonteil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Majeau, A., Herrera, C., Dumonteil, E. (2019). An Improved Approach to Trypanosoma cruzi Molecular Genotyping by Next-Generation Sequencing of the Mini-exon Gene. In: Gómez, K., Buscaglia, C. (eds) T. cruzi Infection. Methods in Molecular Biology, vol 1955. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9148-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9148-8_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9147-1

  • Online ISBN: 978-1-4939-9148-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics