Skip to main content

3D-3 Tumor Models in Drug Discovery for Analysis of Immune Cell Infiltration

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1953))

Abstract

The cross talk between tumor cells and other cells present in the tumor microenvironment such as stromal and immune cells highly influences the behavior and progression of disease. Understanding the underlying mechanisms of interaction is a prerequisite to develop new treatment strategies and to prevent or at least reduce therapy failure in the future. Specific reactivation of the patient’s immune system is one of the major goals today. However, standard two-dimensional (2D) cell culture techniques lack the necessary complexity to address related questions. Novel three-dimensional (3D) in vitro models—embedded in a matrix or encapsulated in alginate—recapitulate the in vivo situation much better. Cross talk between different cell types can be studied starting from co-cultures. As cancer immune modulation is becoming a major research topic, 3D in vitro models represent an important tool to address immune regulatory/modulatory questions for T, NK, and other cells of the immune system. The 3D systems consisting of tumor cells, fibroblasts, and immune cells (3D-3) already proved as a reliable tool for us. For instance, we made use of those models to study the molecular mechanisms of the cross talk of non-small cell lung cancer (NSCLC) and fibroblasts, to unveil macrophage plasticity in the tumor microenvironment and to mirror drug responses in vivo. Generation of those 3D models and how to use them to study immune cell infiltration and activation will be described in the present book chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

3D:

Three-dimensional

CAFs:

Cancer-associated fibroblasts

CFSE:

Carboxyfluorescein succinimidyl ester

CMAC:

7-Amino-4-chloromethylcoumarin

CTLA4:

Cytotoxic T-lymphocyte-associated protein 4 (CD152)

DMEM:

Dulbecco’s Modified Eagle’s Medium

DO:

Dissolved oxygen

ECM:

Extracellular matrix

EDTA:

Ethylenediaminetetraacetic acid

EMT:

Epithelial-mesenchymal transition

FBS:

Fetal bovine serum

FCS:

Fetal calf serum

GFP:

Green fluorescence protein

HDFs:

Human dermal fibroblasts

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

LAG3:

Lymphocyte activation gene 3 (CD223)

MAPK:

Mitogen-activated protein kinase

mTOR:

Mammalian target of rapamycin

NSCLC:

Non-small cell lung cancer

PBS:

Phosphate-buffered saline

PD1:

Programmed cell death protein 1

PNKs:

Primary NK cells

RFP:

Red fluorescence protein

RPMI medium:

Roswell Park Memorial Institute medium

RT:

Room temperature

TAM:

Tumor-associated macrophage

TGF:

Tumor growth factor

TIM3:

T-cell membrane protein 3 (CD366)

T regs:

Regulatory T cells

ZO-1:

Zonula occludens, tight junction protein

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  3. Fouad YA, Aanei C (2017) Revisiting the hallmarks of cancer. Am J Cancer Res 7:1016–1036

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    Article  CAS  PubMed  Google Scholar 

  5. Sukari A, Nagasaka M, Al-Hadidi A et al (2016) Cancer immunology and immunotherapy. Anticancer Res 36:5593–5606

    Article  CAS  PubMed  Google Scholar 

  6. Swann JB, Smyth MJ (2007) Immune surveillance of tumors. J Clin Invest 117:1137–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ziani L, Chouaib S, Thiery J (2018) Alteration of the antitumor immune response by cancer-associated fibroblasts. Front Immunol 9:1–14

    Article  Google Scholar 

  8. Erez N, Truitt M, Olson P et al (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17:135–147

    Article  CAS  PubMed  Google Scholar 

  9. Rudisch A, Dewhurst MR, Horga LG et al (2015) High EMT signature score of invasive non-small cell lung cancer (NSCLC) cells correlates with NFκB driven colony-stimulating factor 2 (CSF2/GM-CSF) secretion by neighboring stromal fibroblasts. PLoS One 10:e0124283

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bianco A, Malapelle U, Rocco D et al (2018) Targeting immune checkpoints in non-small cell lung cancer. Curr Opin Pharmacol 40:46–50

    Article  CAS  PubMed  Google Scholar 

  12. Furue M, Ito T, Wada N et al (2018) Melanoma and immune checkpoint inhibitors. Curr Oncol Rep 20:29

    Article  PubMed  Google Scholar 

  13. Remon J, Vilariño N, Reguart N (2018) Immune checkpoint inhibitors in non-small cell lung cancer (NSCLC): approaches on special subgroups and unresolved burning questions. Cancer Treat Rev 64:21–29

    Article  CAS  PubMed  Google Scholar 

  14. Kazaz SN, Öztop I (2017) Immune checkpoint inhibitors in advanced-stage non-small cell lung cancer. Turk Thorac J 18:101–107

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lugowska I, Teterycz P, Rutkowski P (2018) Immunotherapy of melanoma. Contemp Oncol (Pozn) 22:61–67

    Google Scholar 

  16. Rausch MP, Hastings KT (2017) Immune checkpoint inhibitors in the treatment of melanoma: from basic science to clinical application. In: Ward WH, Farma JM (eds) Cutaneous melanoma: etiology and therapy. Codon Publications, Brisbane. http://www.ncbi.nlm.nih.gov/books/NBK481851/

  17. Pillai RN, Behera M, Owonikoko TK et al (2018) Comparison of the toxicity profile of PD-1 versus PD-L1 inhibitors in non-small cell lung cancer: a systematic analysis of the literature. Cancer 124:271–277

    Article  CAS  PubMed  Google Scholar 

  18. Khoja L, Day D, Wei-Wu Chen T et al (2017) Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review. Ann Oncol 28:2377–2385

    Article  CAS  PubMed  Google Scholar 

  19. Gudjonsson T, Rønnov-Jessen L, Villadsen R et al (2002) Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci 115:39–50

    CAS  PubMed  Google Scholar 

  20. Pupovac A, Senturk B, Griffoni C et al (2018) Toward immunocompetent 3D skin models. Adv Healthc Mater 7(12):e1701405

    Article  PubMed  Google Scholar 

  21. Zhuang P, Sun AX, An J et al (2018) 3D neural tissue models: from spheroids to bioprinting. Biomaterials 154:113–133

    Article  CAS  PubMed  Google Scholar 

  22. Francipane MG, Lagasse E (2016) Towards organs on demand: breakthroughs and challenges in models of organogenesis. Curr Pathobiol Rep 4:77–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zscheppang K, Berg J, Hedtrich S et al (2018) Human pulmonary 3D models for translational research. Biotechnol J 13:1700268

    Article  Google Scholar 

  24. Jackson EL, Lu H (2016) Three-dimensional models for studying development and disease: moving on from organisms to organs-on-a-chip and organoids. Integr Biol (Camb) 8:672–683

    Article  CAS  Google Scholar 

  25. Sreepadmanabh M, Toley BJ (2018) Investigations into the cancer stem cell niche using in-vitro 3-D tumor models and microfluidics. Biotechnol Adv 36(4):1094–1110

    Article  CAS  PubMed  Google Scholar 

  26. Moreira L, Bakir B, Chatterji P et al (2017) Pancreas 3D organoids: current and future aspects as a research platform for personalized medicine in pancreatic cancer. Cell Mol Gastroenterol Hepatol 5:289–298

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rodenhizer D, Dean T, D’Arcangelo E et al (2018) The current landscape of 3D in vitro tumor models: what cancer hallmarks are accessible for drug discovery? Adv Healthc Mater 7(8):e1701174

    Article  PubMed  Google Scholar 

  28. Hoarau-Véchot J, Rafii A, Touboul C et al (2018) Halfway between 2D and animal models: are 3D cultures the ideal tool to study cancer-microenvironment interactions? Int J Mol Sci 19(1):1–24

    Google Scholar 

  29. Caballero D, Blackburn SM, de Pablo M et al (2017) Tumour-vessel-on-a-chip models for drug delivery. Lab Chip 17:3760–3771

    Article  CAS  PubMed  Google Scholar 

  30. Weeber F, Ooft SN, Dijkstra KK et al (2017) Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem Biol 24:1092–1100

    Article  CAS  PubMed  Google Scholar 

  31. Langhans SA (2018) Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol 9:6

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vanderburgh J, Sterling JA, Guelcher SA (2017) 3D printing of tissue engineered for in vitro modeling of disease progression and drug screening. Ann Biomed Eng 45:164–179

    Article  PubMed  Google Scholar 

  33. Jacobi N, Seeboeck R, Hofmann E et al (2017) Organotypic three-dimensional cancer cell cultures mirror drug responses in vivo: lessons learned from the inhibition of EGFR signaling. Oncotarget 8:107423–107440

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fang Y, Eglen RM (2017) Three-dimensional cell cultures in drug discovery and development. SLAS Discov 22:456–472

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Osswald A, Sun Z, Grimm V et al (2015) Three-dimensional tumor spheroids for in vitro analysis of bacteria as gene delivery vectors in tumor therapy. Microb Cell Fact 14:199

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nyga A, Neves J, Stamati K et al (2016) The next level of 3D tumour models: Immunocompetence. Drug Discov Today 21:1421–1428

    Article  PubMed  Google Scholar 

  37. Hirt C, Papadimitropoulos A, Mele V et al (2014) In vitro 3D models of tumor-immune system interaction. Adv Drug Deliv Rev 79–80:145–154

    Article  PubMed  Google Scholar 

  38. Herter S, Morra L, Schlenker R et al (2017) A novel three-dimensional heterotypic spheroid model for the assessment of the activity of cancer immunotherapy agents. Cancer Immunol Immunother 66:129–140

    Article  CAS  PubMed  Google Scholar 

  39. Giannattasio A, Weil S, Kloess S et al (2015) Cytotoxicity and infiltration of human NK cells in in vivo-like tumor spheroids. BMC Cancer 15:351

    Article  PubMed  PubMed Central  Google Scholar 

  40. Masopust D, Sivula CP, Jameson SC (2017) Of mice, dirty mice, and men: using mice to understand human immunology. J Immunol 199:383–388

    Article  CAS  PubMed  Google Scholar 

  41. Clevers H (2016) Modeling development and disease with organoids. Cell 165:1586–1597

    Article  CAS  PubMed  Google Scholar 

  42. Sachs N, Clevers H (2014) Organoid cultures for the analysis of cancer phenotypes. Curr Opin Genet Dev 24:68–73

    Article  CAS  PubMed  Google Scholar 

  43. Bartfeld S, Clevers H (2017) Stem cell-derived organoids and their application for medical research and patient treatment. J Mol Med (Berl) 95:729–738

    Article  CAS  Google Scholar 

  44. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125

    Article  PubMed  Google Scholar 

  45. Lancaster MA, Renner M, Martin CA et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379

    Article  CAS  PubMed  Google Scholar 

  46. Lancaster MA, Knoblich JA (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 9:2329–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stock K, Estrada MF, Vidic S et al (2016) Capturing tumor complexity in vitro: comparative analysis of 2D and 3D tumor models for drug discovery. Sci Rep 6:28951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Hoogt R, Estrada MF, Vidic S et al (2017) Protocols and characterization data for 2D, 3D, and slice-based tumor models from the PREDECT project. Sci Data 4:170170

    Article  PubMed  PubMed Central  Google Scholar 

  49. Davies EJ, Dong M, Gutekunst M et al (2015) Capturing complex tumour biology in vitro: histological and molecular characterisation of precision cut slices. Sci Rep 5:17187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rebelo SP, Pinto C, Martins TR et al (2018) 3D-3-culture: a tool to unveil macrophage plasticity in the tumour microenvironment. Biomaterials 163:185–197

    Article  CAS  PubMed  Google Scholar 

  51. Henney CS, Kuribayashi K, Kern DE et al (1981) Interleukin-2 augments natural killer cell activity. Nature 291:335–338

    Article  CAS  PubMed  Google Scholar 

  52. Bellone G, Aste-Amezaga M, Trinchieri G et al (1995) Regulation of NK cell functions by TGF-beta 1. J Immunol 155:1066–1073

    CAS  PubMed  Google Scholar 

  53. Allan DS, Rybalov B, Awong G et al (2010) TGF-β affects development and differentiation of human natural killer cell subsets. Eur J Immunol 40:2289–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zaiatz-Bittencourt V, Finlay DK, Gardiner CM (2018) Canonical TGF-β signaling pathway represses human NK cell metabolism. J Immunol 200(12):3934–3941

    Article  CAS  PubMed  Google Scholar 

  55. Alli RS, Khar A (2004) Interleukin-12 secreted by mature dendritic cells mediates activation of NK cell function. FEBS Lett 559:71–76

    Article  CAS  PubMed  Google Scholar 

  56. Tomura M, Zhou XY, Maruo S et al (1998) A critical role for IL-18 in the proliferation and activation of NK1.1+ CD3- cells. J Immunol 160:4738–4746

    CAS  PubMed  Google Scholar 

  57. Jung G, Ledbetter JA, Müller-Eberhard HJ (1987) Induction of cytotoxicity in resting human T lymphocytes bound to tumor cells by antibody heteroconjugates. Proc Natl Acad Sci U S A 84:4611–4615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Turka LA, Ledbetter JA, Lee K et al (1990) CD28 is an inducible T cell surface antigen that transduces a proliferative signal in CD3+ mature thymocytes. J Immunol 144:1646–1653

    CAS  PubMed  Google Scholar 

  59. Riddell SR, Greenberg PD (1990) The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. J Immunol Methods 128:189–201

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Nathalie Harrer for sharing her expertise on cultivation of immune cells and Martha Majewska for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Sommergruber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Osswald, A., Hedrich, V., Sommergruber, W. (2019). 3D-3 Tumor Models in Drug Discovery for Analysis of Immune Cell Infiltration. In: Moll, J., Carotta, S. (eds) Target Identification and Validation in Drug Discovery. Methods in Molecular Biology, vol 1953. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9145-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9145-7_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9144-0

  • Online ISBN: 978-1-4939-9145-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics