Skip to main content

Intravenous Infusion of AAV for Widespread Gene Delivery to the Nervous System

  • Protocol
  • First Online:
Adeno-Associated Virus Vectors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1950))

Abstract

The central nervous system (CNS) is a fascinating and intricate set of biological structures that we have yet to fully understand. Studying the in vivo function of the CNS and finding novel methods for treating neurological disorders have been particularly challenging. One difficulty is correcting genetic disorders afflicting the CNS in a targeted manner. Recombinant adeno-associated viruses (rAAVs) have emerged as promising therapeutic tools for treating genetic defects of the CNS, due to their excellent safety profile and ability to cross the blood-brain barrier (BBB). While stereotactic injection of AAV is promising for localized gene delivery, it is less desirable for some applications because of the technique’s invasiveness and limited intraparenchymal spread. Alternatively, intravascular administration can achieve widespread delivery of rAAV to the CNS. In this chapter, we will discuss the prevalent routes of administration to deliver rAAV to the CNS via intravenous (IV) injection in mice. We will highlight key considerations for using rAAV, and the advantages and disadvantages of each administration method. We will also briefly discuss intravenous delivery in larger animal models, factors that may impact experimental interpretations, and outlooks for clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, Lowes L, Alfano L, Berry K, Church K, Kissel JT, Nagendran S, L’Italien J, Sproule DM, Wells C, Cardenas JA, Heitzer MD, Kaspar A, Corcoran S, Braun L, Likhite S, Miranda C, Meyer K, Foust KD, Burghes AHM, Kaspar BK (2017) Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 377(18):1713–1722. https://doi.org/10.1056/NEJMoa1706198

    Article  CAS  PubMed  Google Scholar 

  2. Hebert MD, Whittom AA (2007) Gene-based approaches toward Friedreich ataxia therapeutics. Cell Mol Life Sci 64(23):3034–3043. https://doi.org/10.1007/s00018-007-7293-6

    Article  CAS  PubMed  Google Scholar 

  3. Hobert JA, Dawson G (2006) Neuronal ceroid lipofuscinoses therapeutic strategies: past, present and future. Biochim Biophys Acta 1762(10):945–953. https://doi.org/10.1016/j.bbadis.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  4. Suzuki K, Kastuno M, Banno H, Sobue G (2009) Pathogenesis-targeting therapeutics for spinal and bulbar muscular atrophy (SBMA). Neuropathology 29(4):509–516. https://doi.org/10.1111/j.1440-1789.2009.01013.x

    Article  PubMed  Google Scholar 

  5. Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol 7(1):a020412. https://doi.org/10.1101/cshperspect.a020412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Banks WA (2009) Characteristics of compounds that cross the blood-brain barrier. BMC Neurol 9(Suppl 1):S3. https://doi.org/10.1186/1471-2377-9-S1-S3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185. https://doi.org/10.1124/pr.57.2.4

    Article  CAS  PubMed  Google Scholar 

  8. Ahmed SS, Li H, Cao C, Sikoglu EM, Denninger AR, Su Q, Eaton S, Liso Navarro AA, Xie J, Szucs S, Zhang H, Moore C, Kirschner DA, Seyfried TN, Flotte TR, Matalon R, Gao G (2013) A single intravenous rAAV injection as late as P20 achieves efficacious and sustained CNS Gene therapy in Canavan mice. Mol Ther 21(12):2136–2147. https://doi.org/10.1038/mt.2013.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ahmed SS, Schattgen SA, Frakes AE, Sikoglu EM, Su Q, Li J, Hampton TG, Denninger AR, Kirschner DA, Kaspar B, Matalon R, Gao G (2016) rAAV gene therapy in a Canavan’s disease mouse model reveals immune impairments and an extended pathology beyond the central nervous system. Mol Ther 24(6):1030–1041. https://doi.org/10.1038/mt.2016.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27(1):59–65. https://doi.org/10.1038/nbt.1515

    Article  CAS  PubMed  Google Scholar 

  11. Asokan A, Schaffer DV, Samulski RJ (2012) The AAV vector toolkit: poised at the clinical crossroads. Mol Ther 20(4):699–708. https://doi.org/10.1038/mt.2011.287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Castle MJ, Turunen HT, Vandenberghe LH, Wolfe JH (2016) Controlling AAV tropism in the nervous system with natural and engineered capsids. Methods Mol Biol 1382:133–149. https://doi.org/10.1007/978-1-4939-3271-9_10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao G, Alvira MR, Somanathan S, Lu Y, Vandenberghe LH, Rux JJ, Calcedo R, Sanmiguel J, Abbas Z, Wilson JM (2003) Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc Natl Acad Sci U S A 100(10):6081–6086. https://doi.org/10.1073/pnas.0937739100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 99(18):11854–11859. https://doi.org/10.1073/pnas.182412299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grimm D, Lee JS, Wang L, Desai T, Akache B, Storm TA, Kay MA (2008) In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol 82(12):5887–5911. https://doi.org/10.1128/JVI.00254-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maheshri N, Koerber JT, Kaspar BK, Schaffer DV (2006) Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat Biotechnol 24(2):198–204. https://doi.org/10.1038/nbt1182

    Article  CAS  PubMed  Google Scholar 

  17. Asokan A, Conway JC, Phillips JL, Li C, Hegge J, Sinnott R, Yadav S, DiPrimio N, Nam HJ, Agbandje-McKenna M, McPhee S, Wolff J, Samulski RJ (2010) Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat Biotechnol 28(1):79–82. https://doi.org/10.1038/nbt.1599

    Article  CAS  PubMed  Google Scholar 

  18. Wang D, Li S, Gessler DJ, Xie J, Zhong L, Li J, Tran K, Van Vliet K, Ren L, Su Q, He R, Goetzmann JE, Flotte TR, Agbandje-McKenna M, Gao G (2018) A Rationally engineered capsid variant of AAV9 for systemic CNS-directed and peripheral tissue-detargeted gene delivery in neonates. Mol Ther Methods Clin Dev 9:234–246. https://doi.org/10.1016/j.omtm.2018.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY, Banerjee A, Wu WL, Yang B, Huber N, Pasca SP, Gradinaru V (2016) Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 34(2):204–209. https://doi.org/10.1038/nbt.3440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kotterman MA, Schaffer DV (2014) Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet 15(7):445–451. https://doi.org/10.1038/nrg3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bartel M, Schaffer D, Buning H (2011) Enhancing the clinical potential of AAV vectors by capsid engineering to evade pre-existing immunity. Front Microbiol 2:204. https://doi.org/10.3389/fmicb.2011.00204

    Article  PubMed  PubMed Central  Google Scholar 

  22. Asokan A (2010) Reengineered AAV vectors: old dog, new tricks. Discov Med 9(48):399–403

    PubMed  PubMed Central  Google Scholar 

  23. Su X, Kells AP, Huang EJ, Lee HS, Hadaczek P, Beyer J, Bringas J, Pivirotto P, Penticuff J, Eberling J, Federoff HJ, Forsayeth J, Bankiewicz KS (2009) Safety evaluation of AAV2-GDNF gene transfer into the dopaminergic nigrostriatal pathway in aged and parkinsonian rhesus monkeys. Hum Gene Ther 20(12):1627–1640. https://doi.org/10.1089/hum.2009.103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Davidson BL, Stein CS, Heth JA, Martins I, Kotin RM, Derksen TA, Zabner J, Ghodsi A, Chiorini JA (2000) Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci U S A 97(7):3428–3432. https://doi.org/10.1073/pnas.050581197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, Wilson JM (2004) Clades of Adeno-associated viruses are widely disseminated in human tissues. J Virol 78(12):6381–6388. https://doi.org/10.1128/JVI.78.12.6381-6388.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang B, Li S, Wang H, Guo Y, Gessler DJ, Cao C, Su Q, Kramer J, Zhong L, Ahmed SS, Zhang H, He R, Desrosiers RC, Brown R, Xu Z, Gao G (2014) Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10. Mol Ther 22(7):1299–1309. https://doi.org/10.1038/mt.2014.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang H, Yang B, Mu X, Ahmed SS, Su Q, He R, Wang H, Mueller C, Sena-Esteves M, Brown R, Xu Z, Gao G (2011) Several rAAV vectors efficiently cross the blood-brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol Ther 19(8):1440–1448. https://doi.org/10.1038/mt.2011.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Choudhury SR, Fitzpatrick Z, Harris AF, Maitland SA, Ferreira JS, Zhang Y, Ma S, Sharma RB, Gray-Edwards HL, Johnson JA, Johnson AK, Alonso LC, Punzo C, Wagner KR, Maguire CA, Kotin RM, Martin DR, Sena-Esteves M (2016) In vivo selection yields AAV-B1 capsid for central nervous system and muscle gene therapy. Mol Ther 24(7):1247–1257. https://doi.org/10.1038/mt.2016.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miyake N, Miyake K, Yamamoto M, Hirai Y, Shimada T (2011) Global gene transfer into the CNS across the BBB after neonatal systemic delivery of single-stranded AAV vectors. Brain Res 1389:19–26. https://doi.org/10.1016/j.brainres.2011.03.014

    Article  CAS  PubMed  Google Scholar 

  30. Hordeaux J, Wang Q, Katz N, Buza EL, Bell P, Wilson JM (2018) The neurotropic properties of AAV-PHP.B are limited to C57BL/6J mice. Mol Ther 26(3):664–668. https://doi.org/10.1016/j.ymthe.2018.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bevan AK, Duque S, Foust KD, Morales PR, Braun L, Schmelzer L, Chan CM, McCrate M, Chicoine LG, Coley BD, Porensky PN, Kolb SJ, Mendell JR, Burghes AH, Kaspar BK (2011) Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol Ther 19(11):1971–1980. https://doi.org/10.1038/mt.2011.157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gray SJ, Matagne V, Bachaboina L, Yadav S, Ojeda SR, Samulski RJ (2011) Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol Ther 19(6):1058–1069. https://doi.org/10.1038/mt.2011.72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE (2008) Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16(6):1073–1080. https://doi.org/10.1038/mt.2008.76

    Article  CAS  PubMed  Google Scholar 

  34. Moscioni D, Morizono H, McCarter RJ, Stern A, Cabrera-Luque J, Hoang A, Sanmiguel J, Wu D, Bell P, Gao GP, Raper SE, Wilson JM, Batshaw ML (2006) Long-term correction of ammonia metabolism and prolonged survival in ornithine transcarbamylase-deficient mice following liver-directed treatment with adeno-associated viral vectors. Mol Ther 14(1):25–33. https://doi.org/10.1016/j.ymthe.2006.03.009

    Article  CAS  PubMed  Google Scholar 

  35. Salva MZ, Himeda CL, Tai PW, Nishiuchi E, Gregorevic P, Allen JM, Finn EE, Nguyen QG, Blankinship MJ, Meuse L, Chamberlain JS, Hauschka SD (2007) Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Mol Ther 15(2):320–329. https://doi.org/10.1038/sj.mt.6300027

    Article  CAS  PubMed  Google Scholar 

  36. Marques S, Zeisel A, Codeluppi S, van Bruggen D, Mendanha Falcao A, Xiao L, Li H, Haring M, Hochgerner H, Romanov RA, Gyllborg D, Munoz-Manchado AB, La Manno G, Lonnerberg P, Floriddia EM, Rezayee F, Ernfors P, Arenas E, Hjerling-Leffler J, Harkany T, Richardson WD, Linnarsson S, Castelo-Branco G (2016) Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352(6291):1326–1329. https://doi.org/10.1126/science.aaf6463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hochstim C, Deneen B, Lukaszewicz A, Zhou Q, Anderson DJ (2008) Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell 133(3):510–522. https://doi.org/10.1016/j.cell.2008.02.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, Yao Z, Levi B, Gray LT, Sorensen SA, Dolbeare T, Bertagnolli D, Goldy J, Shapovalova N, Parry S, Lee C, Smith K, Bernard A, Madisen L, Sunkin SM, Hawrylycz M, Koch C, Zeng H (2016) Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci 19(2):335–346. https://doi.org/10.1038/nn.4216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xie J, Ameres SL, Friedline R, Hung JH, Zhang Y, Xie Q, Zhong L, Su Q, He R, Li M, Li H, Mu X, Zhang H, Broderick JA, Kim JK, Weng Z, Flotte TR, Zamore PD, Gao G (2012) Long-term, efficient inhibition of microRNA function in mice using rAAV vectors. Nat Methods 9(4):403–409. https://doi.org/10.1038/nmeth.1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xie J, Xie Q, Zhang H, Ameres SL, Hung JH, Su Q, He R, Mu X, Seher Ahmed S, Park S, Kato H, Li C, Mueller C, Mello CC, Weng Z, Flotte TR, Zamore PD, Gao G (2011) MicroRNA-regulated, systemically delivered rAAV9: a step closer to CNS-restricted transgene expression. Mol Ther 19(3):526–535. https://doi.org/10.1038/mt.2010.279

    Article  CAS  PubMed  Google Scholar 

  41. Brown BD, Venneri MA, Zingale A, Sergi Sergi L, Naldini L (2006) Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med 12(5):585–591. https://doi.org/10.1038/nm1398

    Article  CAS  PubMed  Google Scholar 

  42. Brown BD, Cantore A, Annoni A, Sergi LS, Lombardo A, Della Valle P, D’Angelo A, Naldini L (2007) A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 110(13):4144–4152. https://doi.org/10.1182/blood-2007-03-078493

    Article  CAS  PubMed  Google Scholar 

  43. Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV (2015) Establishment and Dysfunction of the Blood-Brain Barrier. Cell 163(5):1064–1078. https://doi.org/10.1016/j.cell.2015.10.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duque S, Joussemet B, Riviere C, Marais T, Dubreil L, Douar AM, Fyfe J, Moullier P, Colle MA, Barkats M (2009) Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 17(7):1187–1196. https://doi.org/10.1038/mt.2009.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fu H, Muenzer J, Samulski RJ, Breese G, Sifford J, Zeng X, McCarty DM (2003) Self-complementary adeno-associated virus serotype 2 vector: global distribution and broad dispersion of AAV-mediated transgene expression in mouse brain. Mol Ther 8(6):911–917

    Article  CAS  PubMed  Google Scholar 

  46. Penaud-Budloo M, Le Guiner C, Nowrouzi A, Toromanoff A, Cherel Y, Chenuaud P, Schmidt M, von Kalle C, Rolling F, Moullier P, Snyder RO (2008) Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J Virol 82(16):7875–7885. https://doi.org/10.1128/JVI.00649-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gao G, Sena-Esteves M (2012) Introducing genes into mammalian cells: viral vectors. In: Molecular cloning: a laboratory manual, vol 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1209–1313

    Google Scholar 

  48. Lecomte E, Tournaire B, Cogne B, Dupont JB, Lindenbaum P, Martin-Fontaine M, Broucque F, Robin C, Hebben M, Merten OW, Blouin V, Francois A, Redon R, Moullier P, Leger A (2015) Advanced characterization of DNA molecules in rAAV vector preparations by single-stranded virus next-generation sequencing. Mol Ther Nucleic Acids 4:e260. https://doi.org/10.1038/mtna.2015.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tai PWL, Xie J, Fong K, Seetin M, Heiner C, Su Q, Weiand M, Gao G (2018) Adeno-associated virus genome population sequencing achieves full vector genome resolution and reveals human-vector chimeras. Mol Ther Methods Clin Dev 9:130–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boisgerault F, Gross DA, Ferrand M, Poupiot J, Darocha S, Richard I, Galy A (2013) Prolonged gene expression in muscle is achieved without active immune tolerance using microrRNA 142.3p-regulated rAAV gene transfer. Hum Gene Ther 24(4):393–405. https://doi.org/10.1089/hum.2012.208

    Article  CAS  PubMed  Google Scholar 

  51. Majowicz A, Maczuga P, Kwikkers KL, van der Marel S, van Logtenstein R, Petry H, van Deventer SJ, Konstantinova P, Ferreira V (2013) Mir-142-3p target sequences reduce transgene-directed immunogenicity following intramuscular adeno-associated virus 1 vector-mediated gene delivery. J Gene Med 15(6–7):219–232. https://doi.org/10.1002/jgm.2712

    Article  CAS  PubMed  Google Scholar 

  52. Matsuzaki Y, Konno A, Mochizuki R, Shinohara Y, Nitta K, Okada Y, Hirai H (2018) Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain. Neurosci Lett 665:182–188. https://doi.org/10.1016/j.neulet.2017.11.049

    Article  CAS  PubMed  Google Scholar 

  53. Rapti K, Louis-Jeune V, Kohlbrenner E, Ishikawa K, Ladage D, Zolotukhin S, Hajjar RJ, Weber T (2012) Neutralizing antibodies against AAV serotypes 1, 2, 6, and 9 in sera of commonly used animal models. Mol Ther 20(1):73–83. https://doi.org/10.1038/mt.2011.177

    Article  CAS  PubMed  Google Scholar 

  54. Samaranch L, Sebastian WS, Kells AP, Salegio EA, Heller G, Bringas JR, Pivirotto P, DeArmond S, Forsayeth J, Bankiewicz KS (2014) AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction. Mol Ther 22(2):329–337. https://doi.org/10.1038/mt.2013.266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schwartz M, Deczkowska A (2016) Neurological disease as a failure of brain-immune crosstalk: the multiple faces of neuroinflammation. Trends Immunol 37(10):668–679. https://doi.org/10.1016/j.it.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  56. Paulk NK, Pekrun K, Zhu E, Nygaard S, Li B, Xu J, Chu K, Leborgne C, Dane AP, Haft A, Zhang Y, Zhang F, Morton C, Valentine MB, Davidoff AM, Nathwani AC, Mingozzi F, Grompe M, Alexander IE, Lisowski L, Kay MA (2018) Bioengineered AAV capsids with combined high human liver transduction in vivo and unique humoral seroreactivity. Mol Ther 26(1):289–303. https://doi.org/10.1016/j.ymthe.2017.09.021

    Article  CAS  PubMed  Google Scholar 

  57. Keeler GD, Markusic DM, Hoffman BE (2017) Liver induced transgene tolerance with AAV vectors. Cell Immunol. https://doi.org/10.1016/j.cellimm.2017.12.002

  58. Breous E, Somanathan S, Vandenberghe LH, Wilson JM (2009) Hepatic regulatory T cells and Kupffer cells are crucial mediators of systemic T cell tolerance to antigens targeting murine liver. Hepatology 50(2):612–621. https://doi.org/10.1002/hep.23043

    Article  CAS  PubMed  Google Scholar 

  59. Cao O, Loduca PA, Herzog RW (2009) Role of regulatory T cells in tolerance to coagulation factors. J Thromb Haemost 7(Suppl 1):88–91. https://doi.org/10.1111/j.1538-7836.2009.03417.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dobrzynski E, Herzog RW (2005) Tolerance induction by viral in vivo gene transfer. Clin Med Res 3(4):234–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kumar SRP, Hoffman BE, Terhorst C, de Jong YP, Herzog RW (2017) The balance between CD8(+) T Cell-mediated clearance of AAV-encoded antigen in the liver and tolerance is dependent on the vector dose. Mol Ther 25(4):880–891. https://doi.org/10.1016/j.ymthe.2017.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sun B, Bird A, Young SP, Kishnani PS, Chen YT, Koeberl DD (2007) Enhanced response to enzyme replacement therapy in Pompe disease after the induction of immune tolerance. Am J Hum Genet 81(5):1042–1049. https://doi.org/10.1086/522236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hinderer C, Katz N, Buza EL, Dyer C, Goode T, Bell P, Richman LK, Wilson JM (2018) Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum Gene Ther 29(3):285–298. https://doi.org/10.1089/hum.2018.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kugler S, Meyn L, Holzmuller H, Gerhardt E, Isenmann S, Schulz JB, Bahr M (2001) Neuron-specific expression of therapeutic proteins: evaluation of different cellular promoters in recombinant adenoviral vectors. Mol Cell Neurosci 17(1):78–96. https://doi.org/10.1006/mcne.2000.0929

    Article  CAS  PubMed  Google Scholar 

  65. Shevtsova Z, Malik JM, Michel U, Bahr M, Kugler S (2005) Promoters and serotypes: targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo. Exp Physiol 90(1):53–59. https://doi.org/10.1113/expphysiol.2004.028159

    Article  CAS  PubMed  Google Scholar 

  66. Stierl M, Penzkofer A, Kennis JT, Hegemann P, Mathes T (2014) Key residues for the light regulation of the blue light-activated adenylyl cyclase from Beggiatoa sp. Biochemistry 53(31):5121–5130. https://doi.org/10.1021/bi500479v

    Article  CAS  PubMed  Google Scholar 

  67. Hedegaard C, Kjaer-Sorensen K, Madsen LB, Henriksen C, Momeni J, Bendixen C, Oxvig C, Larsen K (2013) Porcine synapsin 1: SYN1 gene analysis and functional characterization of the promoter. FEBS Open Bio 3:411–420. https://doi.org/10.1016/j.fob.2013.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McLean JR, Smith GA, Rocha EM, Hayes MA, Beagan JA, Hallett PJ, Isacson O (2014) Widespread neuron-specific transgene expression in brain and spinal cord following synapsin promoter-driven AAV9 neonatal intracerebroventricular injection. Neurosci Lett 576:73–78. https://doi.org/10.1016/j.neulet.2014.05.044

    Article  CAS  PubMed  Google Scholar 

  69. Gessler DJ, Li D, Xu H, Su Q, Sanmiguel J, Tuncer S, Moore C, King J, Matalon R, Gao G (2017) Redirecting N-acetylaspartate metabolism in the central nervous system normalizes myelination and rescues Canavan disease. JCI Insight 2(3):e90807. https://doi.org/10.1172/jci.insight.90807

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cho W, Hagemann TL, Johnson DA, Johnson JA, Messing A (2009) Dual transgenic reporter mice as a tool for monitoring expression of glial fibrillary acidic protein. J Neurochem 110(1):343–351. https://doi.org/10.1111/j.1471-4159.2009.06146.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. von Jonquieres G, Frohlich D, Klugmann CB, Wen X, Harasta AE, Ramkumar R, Spencer ZH, Housley GD, Klugmann M (2016) Recombinant human myelin-associated glycoprotein promoter drives selective AAV-mediated transgene expression in oligodendrocytes. Front Mol Neurosci 9:13. https://doi.org/10.3389/fnmol.2016.00013

    Article  CAS  Google Scholar 

  72. Chen CT, Gottlieb DI, Cohen BA (2008) Ultraconserved elements in the Olig2 promoter. PLoS One 3(12):e3946. https://doi.org/10.1371/journal.pone.0003946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangping Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gessler, D.J., Tai, P.W.L., Li, J., Gao, G. (2019). Intravenous Infusion of AAV for Widespread Gene Delivery to the Nervous System. In: Castle, M. (eds) Adeno-Associated Virus Vectors. Methods in Molecular Biology, vol 1950. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9139-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9139-6_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9138-9

  • Online ISBN: 978-1-4939-9139-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics