Skip to main content

Method for Determining Gelatinolytic Activity in Tissue Extracts: Real-Time Gelatin Zymography

  • Protocol
The Extracellular Matrix

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1952))

Abstract

To explore the physiological or pathological roles of proteases, it is important to be able to detect and precisely localize them in a tissue, to differentiate between inactive and active forms, as well as to quantify and determine the nature of the enzyme that degrades a given substrate. Here we present a protocol for real-time gelatin zymography that is very useful for the detection of gelatin-degrading proteases in tissue extracts. This method uses fluorescence-labeled gelatin and therefore we also present an easy, fast, and cheap method for labeling gelatin with 2-methoxy-2,4-diphenyl-3(2H)-furanone (MDPF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Artenstein AW, Opal SM (2011) Proprotein convertases in health and disease. N Engl J Med 365:2507–2518

    Article  CAS  Google Scholar 

  2. Winberg JO (2012) Matrix Proteinases: biological significance in health and disease. In: Karamanos NK (ed) Extracellular matrix: pathobiology and signaling. De Gruyter, Berlin, pp 230–238

    Google Scholar 

  3. Overall CM, Blobel CP (2007) In search of partners: linking extracellular proteases to substrates. Nat Rev Mol Cell Biol 8:245–257

    Article  CAS  Google Scholar 

  4. Quiros PM, Langer T, Lopez-Otin C (2015) New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol 16:345–359

    Article  CAS  Google Scholar 

  5. Ricard-Blum S, Vallet SD (2016) Proteases decode the extracellular matrix cryptome. Biochimie 122:300–313

    Article  CAS  Google Scholar 

  6. Hadler-Olsen E, Fadnes B, Sylte I et al (2011) Regulation of matrix metalloproteinase activity in health and disease. FEBS J 278:28–45

    Article  CAS  Google Scholar 

  7. Maeda H (1996) Role of microbial proteases in pathogenesis. Microbiol Immunol 40:685–699

    Article  CAS  Google Scholar 

  8. Tokito A, Jougasaki M (2016) Matrix metalloproteinases in non-neoplastic disorders. Int J Mol Sci 17. https://doi.org/10.3390/ijms17071178

  9. Turk V, Stoka V, Vasiljeva O et al (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta 1824:68–88

    Article  CAS  Google Scholar 

  10. Brotz-Oesterhelt H, Sass P (2014) Bacterial caseinolytic proteases as novel targets for antibacterial treatment. Int J Med Microbiol 304:23–30

    Article  Google Scholar 

  11. Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278:16–27

    Article  CAS  Google Scholar 

  12. Rawlings ND, Barrett AJ, Thomas PD et al (2018) The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 46:D624–D632

    Article  CAS  Google Scholar 

  13. Gaffney J, Solomonov I, Zehorai E et al (2015) Multilevel regulation of matrix metalloproteinases in tissue homeostasis indicates their molecular specificity in vivo. Matrix Biol 44–46:191–199

    Article  Google Scholar 

  14. Overall CM, Lopez-Otin C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2:657–672

    Article  CAS  Google Scholar 

  15. Malla N, Sjoli S, Winberg JO et al (2008) Biological and pathobiological functions of gelatinase dimers and complexes. Connect Tissue Res 49:180–184

    Article  CAS  Google Scholar 

  16. Heussen C, Dowdle EB (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem 102:196–202

    Article  CAS  Google Scholar 

  17. Lin CY, Anders J, Johnson M et al (1999) Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J Biol Chem 274:18231–18236

    Article  CAS  Google Scholar 

  18. Spens E, Haggstrom L (2005) Protease activity in protein-free NS0 myeloma cell cultures. In Vitro Cell Dev Biol Anim 41:330–336

    CAS  PubMed  Google Scholar 

  19. Winberg JO, Gedde-Dahl T (1986) Gelatinase expression in generalized epidermolysis bullosa simplex fibroblasts. J Invest Dermatol 87:326–329

    Article  CAS  Google Scholar 

  20. Hadler-Olsen E, Kanapathippillai P, Berg E et al (2010) Gelatin in situ zymography on fixed, paraffin-embedded tissue: zinc and ethanol fixation preserve enzyme activity. J Histochem Cytochem 58:29–39

    Article  CAS  Google Scholar 

  21. O’grady RL, Nethery A, Hunter N (1984) A fluorescent screening assay for collagenase using collagen labeled with 2-methoxy-2,4-diphenyl-3(2H)-furanone. Anal Biochem 140:490–494

    Article  Google Scholar 

  22. Hattori S, Fujisaki H, Kiriyama T et al (2002) Real-time zymography and reverse zymography: a method for detecting activities of matrix metalloproteinases and their inhibitors using FITC-labeled collagen and casein as substrates. Anal Biochem 301:27–34

    Article  CAS  Google Scholar 

  23. Loennechen T, Mathisen B, Hansen J et al (2003) Colchicine induces membrane-associated activation of matrix metalloproteinase-2 in osteosarcoma cells in an S100A4-independent manner. Biochem Pharmacol 66:2341–2353

    Article  CAS  Google Scholar 

  24. Malla N, Berg E, Theocharis AD et al (2013) In vitro reconstitution of complexes between pro-matrix metalloproteinase-9 and the proteoglycans serglycin and versican. FEBS J 280:2870–2887

    Article  CAS  Google Scholar 

  25. Mathisen B, Lindstad RI, Hansen J et al (2003) S100A4 regulates membrane induced activation of matrix metalloproteinase-2 in osteosarcoma cells. Clin Exp Metastasis 20:701–711

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Kristin Andreassen Fenton (Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway) for the gift of kidney and liver homogenates from a BALB/c mouse and senior engineer Eli Berg (Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway) for performing the zymography experiments. We also would thank Rod Wolstenholme (Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway) for help with the figure.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elin Hadler-Olsen or Jan-Olof Winberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Hadler-Olsen, E., Winberg, JO. (2019). Method for Determining Gelatinolytic Activity in Tissue Extracts: Real-Time Gelatin Zymography. In: Vigetti, D., Theocharis, A.D. (eds) The Extracellular Matrix. Methods in Molecular Biology, vol 1952. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9133-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9133-4_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9132-7

  • Online ISBN: 978-1-4939-9133-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics