Skip to main content

Analyzing T-Cell Plasma Membrane Lipids by Flow Cytometry

  • Protocol
  • First Online:
Lipid-Activated Nuclear Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1951))

Abstract

Plasma membrane lipid rafts are highly ordered membrane microdomains enriched for glycosphingolipids and cholesterol, which play an important role during T-cell antigen receptor (TCR) signaling. Our previous work has demonstrated that plasma membrane lipid composition is an important determinant of human CD4+ T-cell function and that defects in lipid raft expression contribute to CD4+ dysfunction in patients with autoimmunity. In this chapter we share three flow cytometry-based methods to quantitatively analyze plasma membrane lipid composition in primary human CD4+ T cells. We describe the quantification of glycosphingolipid expression using cholera toxin subunit B, cholesterol expression using filipin staining, and membrane “lipid order” using di-4-ANEPPDHQ. These methods can easily be adapted to analyze different cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. BD (2018) BD FACSymphony—overview|BD FACSymphony flow cytometer|BD Biosciences-US. http://www.bdbiosciences.com/us/instruments/research/cell-analyzers/bd-facsymphony/m/6022968/overview. Accessed 3 Mar 2018

  2. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572. https://doi.org/10.1038/42408

    Article  CAS  Google Scholar 

  3. Janes PW, Ley SC, Magee AI, Kabouridis PS (2000) The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol 12:23–34. https://doi.org/10.1006/smim.2000.0204

    Article  CAS  PubMed  Google Scholar 

  4. Zech T, Ejsing CS, Gaus K, de Wet B, Shevchenko A, Simons K, Harder T (2009) Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO J 28:466–476. https://doi.org/10.1038/emboj.2009.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rentero C, Zech T, Quinn CM, Engelhardt K, Williamson D, Grewal T, Jessup W, Harder T, Gaus K (2008) Functional implications of plasma membrane condensation for T cell activation. PLoS One 3:e2262. https://doi.org/10.1371/journal.pone.0002262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McDonald G, Deepak S, Miguel L, Hall CJ, Isenberg DA, Magee AI, Butters T, Jury EC (2014) Normalizing glycosphingolipids restores function in CD4+ T cells from lupus patients. J Clin Invest 124:712–724. https://doi.org/10.1172/jci69571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jury EC, Kabouridis PS, Flores-Borja F, Mageed RA, Isenberg DA (2004) Altered lipid raft-associated signaling and ganglioside expression in T lymphocytes from patients with systemic lupus erythematosus. J Clin Invest 113:1176–1187. https://doi.org/10.1172/JCI20345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Flores-Borja F, Kabouridis PS, Jury EC, Isenberg DA, Mageed RA (2007) Altered lipid raft-associated proximal signaling and translocation of CD45 tyrosine phosphatase in B lymphocytes from patients with systemic lupus erythematosus. Arthritis Rheum 56:291–302. https://doi.org/10.1002/art.22309

    Article  CAS  PubMed  Google Scholar 

  9. Miguel L, Owen DM, Lim C, Liebig C, Evans J, Magee AI, Jury EC (2011) Primary human CD4+ T cells have diverse levels of membrane lipid order that correlate with their function. J Immunol 186:3505–3516. https://doi.org/10.4049/jimmunol.1002980

    Article  CAS  PubMed  Google Scholar 

  10. Jin L, Millard AC, Wuskell JP, Dong X, Wu D, Clark HA, Loew LM (2006) Characterization and application of a new optical probe for membrane lipid domains. Biophys J 90:2563–2575. https://doi.org/10.1529/biophysj.105.072884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Owen DM, Rentero C, Magenau A, Abu-Siniyeh A, Gaus K (2012) Quantitative imaging of membrane lipid order in cells and organisms. Nat Protoc 7:24–35. https://doi.org/10.1038/nprot.2011.419

    Article  CAS  Google Scholar 

  12. Kenworthy AK, Petranova N, Edidin M (2000) High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol Biol Cell 11:1645–1655

    Article  CAS  Google Scholar 

  13. Fishman PH, Atikkan EE (1980) Mechanism of action of cholera toxin: effect of receptor density and multivalent binding on activation of adenylate cyclase. J Membr Biol 54:51–60

    Article  CAS  Google Scholar 

  14. Pacuszka T, Moss J, Fishman PH (1978) A sensitive method for the detection of GM1-ganglioside in rat adipocyte preparations based on its interaction with choleragen. J Biol Chem 253:5103–5108

    CAS  PubMed  Google Scholar 

  15. Janes PW, Ley SC, Magee AI (1999) Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J Cell Biol 147:447–461. https://doi.org/10.1083/JCB.147.2.447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Norman AW, Demel RA, de Kruyff B, van Deenen LL (1972) Studies on the biological properties of polyene antibiotics. Evidence for the direct interaction of filipin with cholesterol. J Biol Chem 247:1918–1929

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work from KEW was funded by a British Heart Foundation PhD Studentship (FS/13/59/30649). Work from ECJ was funded by Arthritis Research UK Fellowships (20085 and 18106), Lupus UK, The Rosetrees Trust (M409), and University College London Hospital Clinical Research and Development Committee project grant (GCT/2008/EJ and Fast Track grant F193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth C. Jury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Waddington, K.E., Pineda-Torra, I., Jury, E.C. (2019). Analyzing T-Cell Plasma Membrane Lipids by Flow Cytometry. In: Gage, M., Pineda-Torra, I. (eds) Lipid-Activated Nuclear Receptors. Methods in Molecular Biology, vol 1951. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9130-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9130-3_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9129-7

  • Online ISBN: 978-1-4939-9130-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics