Skip to main content

Assays for Neuronal Defects Caused by Early Formation of α-Synuclein Inclusions in Primary Cultured Neurons

  • Protocol
  • First Online:
Alpha-Synuclein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1948))

Abstract

Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) are characterized by intracellular inclusions composed mostly of α-synuclein (Baba et al., Am J Pathol 152:879–884, 1998). How inclusion formation impacts neuronal function prior to death is key to understanding disease progression and identifying therapeutic windows. In the α-synuclein fibril model, exposure of primary neurons to α-synuclein fibrils induces endogenously expressed α-synuclein to form inclusions which closely resembles pathologic mechanisms in humans with PD and DLB (Volpicelli-Daley et al., Neuron 72, 57–71, 2011). In this model, at 7 days after exposure of neurons to fibrils, when there is no neuron death, inclusions in the axon selectively impair axonal transport of endosomes carrying the TrkB receptor and LC3-positive autophagosomes (Volpicelli-Daley et al., Mol Biol Cell 25:4010–4023, 2014). In addition, the frequency and amplitude of spontaneous Ca2+ transients are reduced in neurons 7 days after fibril exposure. Here we discuss protocols for plating primary hippocampal neurons, generating fibrils and measuring axonal transport and Ca2+ transients. These assays provide additional assays of neurotoxicity allowing researchers to determine if a therapeutic intervention can prevent neuronal defects before intractable neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, Trojanowski JQ, Iwatsubo T (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152:879–884

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, Meaney DF, Trojanowski JQ, Lee VM (2011) Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72:57–71

    Article  CAS  Google Scholar 

  3. Volpicelli-Daley LA, Gamble KL, Schultheiss CE, Riddle DM, West AB, Lee VM (2014) Formation of alpha-synuclein Lewy neurite-like aggregates in axons impedes the transport of distinct endosomes. Mol Biol Cell 25:4010–4023

    Article  Google Scholar 

  4. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300

    Article  CAS  Google Scholar 

  5. Volpicelli-Daley LA, Luk KC, Lee VM (2014) Addition of exogenous alpha-synuclein preformed fibrils to primary neuronal cultures to seed recruitment of endogenous alpha-synuclein to Lewy body and Lewy neurite-like aggregates. Nat Protoc 9:2135–2146

    Article  CAS  Google Scholar 

  6. Polinski NK, Volpicelli-Daley LA, Sortwell CE, Luk KC, Cremades N, Gottler LM, Froula J, Duffy MF, Lee VM, Martinez TN, Dave KD (2018) Best practices for generating and using alpha-synuclein pre-formed fibrils to model Parkinson’s disease in rodents. J Parkinsons Dis 8(2):303–322

    Article  Google Scholar 

  7. Seibenhener ML, Wooten MW (2012) Isolation and culture of hippocampal neurons from prenatal mice. J Vis Exp. https://doi.org/10.3791/3634

  8. Bousset L, Brundin P, Bockmann A, Meier B, Melki R (2016) An efficient procedure for removal and inactivation of alpha-synuclein assemblies from laboratory materials. J Parkinsons Dis 6:143–151

    Article  CAS  Google Scholar 

  9. Roy S, Winton MJ, Black MM, Trojanowski JQ, Lee VM (2008) Cytoskeletal requirements in axonal transport of slow component-b. J Neurosci 28:5248–5256

    Article  CAS  Google Scholar 

  10. Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8:1454–1468

    Article  CAS  Google Scholar 

  11. Kalmar B, Innes A, Wanisch K, Kolaszynska AK, Pandraud A, Kelly G, Abramov AY, Reilly MM, Schiavo G, Greensmith L (2017) Mitochondrial deficits and abnormal mitochondrial retrograde axonal transport play a role in the pathogenesis of mutant Hsp27-induced Charcot Marie Tooth Disease. Hum Mol Genet 26:3313–3326

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura A. Volpicelli-Daley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Volpicelli-Daley, L.A. (2019). Assays for Neuronal Defects Caused by Early Formation of α-Synuclein Inclusions in Primary Cultured Neurons. In: Bartels, T. (eds) Alpha-Synuclein. Methods in Molecular Biology, vol 1948. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9124-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9124-2_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9123-5

  • Online ISBN: 978-1-4939-9124-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics