Skip to main content

Improved Method of RNA Isolation from Laser Capture Microdissection (LCM)-Derived Plant Tissues

  • Protocol
Plant Long Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1933))

Abstract

Laser capture microdissection (LCM) is a tool to isolate desired and/or less accessible cells or tissues from a heterogeneous population. In the current method, we describe an efficient and cost-effective method to obtain both high-quality mRNA and miRNAs in sufficient quantity from LCM-derived plant tissues. The quality of the isolated RNA can be assessed using Bioanalyzer. Using modified stem-loop RT-PCR, we confirmed the presence of 21–24 nucleotide (nt) long mature miRNAs. This modified LCM-based method has been found to be suitable for the tissue-specific expression analysis of both genes and small RNAs (miRNAs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iyer-Pascuzzi AS, Benfey PN (2010) Fluorescence-activated cell sorting in plant developmental biology. Methods Mol Biol 655:313–319. https://doi.org/10.1007/978-1-60761-765-5_21

    Article  CAS  PubMed  Google Scholar 

  2. Herzenberg LA, Sweet RG (1976) Fluorescence-activated cell sorting. Sci Am 234(3):108–117

    Article  CAS  PubMed  Google Scholar 

  3. Birnbaum K, Jung JW, Wang JY, Lambert GM, Hirst JA, Galbraith DW, Benfey PN (2005) Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nat Methods 2(8):615–619. https://doi.org/10.1038/nmeth0805-615

    Article  CAS  PubMed  Google Scholar 

  4. Nawy T, Lee JY, Colinas J, Wang JY, Thongrod SC, Malamy JE, Birnbaum K, Benfey PN (2005) Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 17(7):1908–1925. https://doi.org/10.1105/tpc.105.031724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274(5289):998–1001

    Article  CAS  PubMed  Google Scholar 

  6. Domazet B, Maclennan GT, Lopez-Beltran A, Montironi R, Cheng L (2008) Laser capture microdissection in the genomic and proteomic era: targeting the genetic basis of cancer. Int J Clin Exp Pathol 1(6):475–488

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kerk NM, Ceserani T, Tausta SL, Sussex IM, Nelson TM (2003) Laser capture microdissection of cells from plant tissues. Plant Physiol 132(1):27–35. https://doi.org/10.1104/pp.102.018127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ohtsu K, Smith MB, Emrich SJ, Borsuk LA, Zhou R, Chen T, Zhang X, Timmermans MC, Beck J, Buckner B, Janick-Buckner D, Nettleton D, Scanlon MJ, Schnable PS (2007) Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.). Plant J 52(3):391–404. https://doi.org/10.1111/j.1365-313X.2007.03244.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brooks L 3rd, Strable J, Zhang X, Ohtsu K, Zhou R, Sarkar A, Hargreaves S, Elshire RJ, Eudy D, Pawlowska T, Ware D, Janick-Buckner D, Buckner B, Timmermans MC, Schnable PS, Nettleton D, Scanlon MJ (2009) Microdissection of shoot meristem functional domains. PLoS Genet 5(5):e1000476. https://doi.org/10.1371/journal.pgen.1000476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gautam V, Sarkar AK (2015) Laser assisted microdissection, an efficient technique to understand tissue specific gene expression patterns and functional genomics in plants. Mol Biotechnol 57(4):299–308. https://doi.org/10.1007/s12033-014-9824-3

    Article  CAS  PubMed  Google Scholar 

  11. Gautam V, Singh A, Singh S, Sarkar AK (2016) An efficient LCM-based method for tissue specific expression analysis of genes and miRNAs. Sci Rep 6:21577. https://doi.org/10.1038/srep21577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scanlon MJ, Ohtsu K, Timmermans MC, Schnable PS (2009) Laser microdissection-mediated isolation and in vitro transcriptional amplification of plant RNA. Curr Protoc Mol Biol Chapter 25:Unit 25A.23. https://doi.org/10.1002/0471142727.mb25a03s87

    Article  Google Scholar 

  13. Ohtsu K, Schnable PS (2007) T7-based RNA amplification for genotyping from maize shoot apical meristem. CSH Protoc 2007:pdb prot4785

    PubMed  Google Scholar 

  14. Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12. https://doi.org/10.1186/1746-4811-3-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Benes V, Castoldi M (2010) Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50(4):244–249. https://doi.org/10.1016/j.ymeth.2010.01.026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

V.G., A.S., and S.S. thank the Council for Scientific and Industrial Research (CSIR), India, and the National Institute of Plant Genome Research (NIPGR), New Delhi, India, for funding and internal grants. V.G. and A.S. also acknowledge the Department of Biotechnology (DBT), India, for fellowship. S.V. thanks the Department of Science and Technology-Science and Engineering Research Board (DST-SERB), India, for National Post Doctoral Fellowship (N-PDF). A.K.S. thanks NIPGR and DBT (Project Grant No. BT/PR12766/BPA/118/63/2015), New Delhi, India, for fellowship and grants. The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananda K. Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Gautam, V., Singh, A., Singh, S., Verma, S., Sarkar, A.K. (2019). Improved Method of RNA Isolation from Laser Capture Microdissection (LCM)-Derived Plant Tissues. In: Chekanova, J.A., Wang, HL.V. (eds) Plant Long Non-Coding RNAs. Methods in Molecular Biology, vol 1933. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9045-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9045-0_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9044-3

  • Online ISBN: 978-1-4939-9045-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics