Skip to main content

Analysis of siRNA Precursors Generated by RNA Polymerase IV and RNA-Dependent RNA Polymerase 2 in Arabidopsis

  • Protocol
Plant Long Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1933))

Abstract

Noncoding RNAs perform diverse regulatory functions in living cells. In plants, two RNA polymerase II-related enzymes, RNA polymerases IV and V (Pol IV and V), specialize in the synthesis of noncoding RNAs that silence a subset of transposable elements and genes via RNA-directed DNA methylation (RdDM). In this process, Pol IV partners with RNA-dependent RNA polymerase 2 (RDR2) to produce double-stranded RNAs that are then cut by an RNase III enzyme, Dicer-like 3 (DCL3), into 24 nt small interfering RNAs (siRNAs). The siRNAs are loaded into an Argonaute family protein, primarily AGO4, and guide the complex to complementary DNA target sequences where RdDM and repressive chromatin modifications ensue. The dependence of 24 nt siRNA biogenesis on Pol IV and RDR2 has been known for more than a decade, but the elusive pre-siRNA transcripts synthesized by Pol IV and RDR2 have only recently been identified. This chapter describes the approaches that enabled our identification of Pol IV/RDR2-dependent RNAs (P4R2 RNAs) in Arabidopsis thaliana. These included the use of a triple Dicer mutant (dcl2 dcl3 dcl4) to cause P4R2 RNAs to accumulate, genome-wide identification and mapping of P4R2 RNAs using a modified Illumina small RNA-Seq protocol, and multiple bioinformatic pipelines for data analysis and displaying results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson RC, Doudna JA (2013) Molecular mechanisms of RNA interference. Annu Rev Biophys 42:217–239. https://doi.org/10.1146/annurev-biophys-083012-130404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vaucheret H (2008) Plant ARGONAUTES. Trends Plant Sci 13(7):350–358. https://doi.org/10.1016/j.tplants.2008.04.007

    Article  CAS  PubMed  Google Scholar 

  3. Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2(5):E104. https://doi.org/10.1371/journal.pbio.0020104

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19(18):2164–2175. https://doi.org/10.1101/gad.1352605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory AC, Hilbert JL, Bartel DP, Crete P (2004) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16(1):69–79

    Article  CAS  PubMed  Google Scholar 

  6. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297(5589):2053–2056. https://doi.org/10.1126/science.1076311

    Article  CAS  PubMed  Google Scholar 

  7. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320(5880):1185–1190. https://doi.org/10.1126/science.1159151

    Article  CAS  PubMed  Google Scholar 

  8. Matzke MA, Kanno T, Matzke AJ (2015) RNA-Directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants. Annu Rev Plant Biol 66:243–267. https://doi.org/10.1146/annurev-arplant-043014-114633

    Article  CAS  PubMed  Google Scholar 

  9. Ream TS, Haag JR, Wierzbicki AT, Nicora CD, Norbeck AD, Zhu JK, Hagen G, Guilfoyle TJ, Pasa-Tolic L, Pikaard CS (2009) Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. Mol Cell 33(2):192–203. https://doi.org/10.1016/j.molcel.2008.12.015

    Article  CAS  PubMed  Google Scholar 

  10. Wendte JM, Pikaard CS (2017) The RNAs of RNA-directed DNA methylation. Biochim Biophys Acta 1860(1):140–148. https://doi.org/10.1016/j.bbagrm.2016.08.004

    Article  CAS  Google Scholar 

  11. Law JA, Du J, Hale CJ, Feng S, Krajewski K, Palanca AM, Strahl BD, Patel DJ, Jacobsen SE (2013) Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature 498(7454):385–389. https://doi.org/10.1038/nature12178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blevins T, Pontvianne F, Cocklin R, Podicheti R, Chandrasekhara C, Yerneni S, Braun C, Lee B, Rusch D, Mockaitis K, Tang H, Pikaard CS (2014) A two-step process for epigenetic inheritance in Arabidopsis. Mol Cell 54(1):30–42. https://doi.org/10.1016/j.molcel.2014.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Haag JR, Ream TS, Marasco M, Nicora CD, Norbeck AD, Pasa-Tolic L, Pikaard CS (2012) In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing. Mol Cell 48(5):811–818. https://doi.org/10.1016/j.molcel.2012.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wierzbicki AT, Ream TS, Haag JR, Pikaard CS (2009) RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat Genet 41(5):630–634. https://doi.org/10.1038/ng.365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lahmy S, Pontier D, Bies-Etheve N, Laudie M, Feng S, Jobet E, Hale CJ, Cooke R, Hakimi MA, Angelov D, Jacobsen SE, Lagrange T (2016) Evidence for ARGONAUTE4-DNA interactions in RNA-directed DNA methylation in plants. Genes Dev 30(23):2565–2570. https://doi.org/10.1101/gad.289553.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhong X, Du J, Hale CJ, Gallego-Bartolome J, Feng S, Vashisht AA, Chory J, Wohlschlegel JA, Patel DJ, Jacobsen SE (2014) Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell 157(5):1050–1060. https://doi.org/10.1016/j.cell.2014.03.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blevins T, Pontes O, Pikaard CS, Meins F Jr (2009) Heterochromatic siRNAs and DDM1 independently silence aberrant 5S rDNA transcripts in Arabidopsis. PLoS One 4(6):e5932. https://doi.org/10.1371/journal.pone.0005932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blevins T, Podicheti R, Mishra V, Marasco M, Wang J, Rusch D, Tang H, Pikaard CS (2015) Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis. elife 4:e09591. https://doi.org/10.7554/eLife.09591

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pontes O, Li CF, Nunes PC, Haag J, Ream T, Vitins A, Jacobsen SE, Pikaard CS (2006) The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126(1):79–92

    Article  CAS  PubMed  Google Scholar 

  20. Henderson IR, Zhang X, Lu C, Johnson L, Meyers BC, Green PJ, Jacobsen SE (2006) Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 38(6):721–725 Epub 2006 May 2014

    Article  CAS  PubMed  Google Scholar 

  21. Blevins T, Rajeswaran R, Aregger M, Borah BK, Schepetilnikov M, Baerlocher L, Farinelli L, Meins F Jr, Hohn T, Pooggin MM (2011) Massive production of small RNAs from a non-coding region of Cauliflower mosaic virus in plant defense and viral counter-defense. Nucleic Acids Res 39(12):5003–5014. https://doi.org/10.1093/nar/gkr119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159. https://doi.org/10.1146/annurev-arplant-050312-120043

    Article  CAS  PubMed  Google Scholar 

  23. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20(24):3407–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Carrington JC (2007) Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5(3):e57

    Article  PubMed  PubMed Central  Google Scholar 

  25. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15(2):188–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu C, Meyers BC, Green PJ (2007) Construction of small RNA cDNA libraries for deep sequencing. Methods 43(2):110–117. https://doi.org/10.1016/j.ymeth.2007.05.002

    Article  CAS  PubMed  Google Scholar 

  27. Zhai J, Bischof S, Wang H, Feng S, Lee TF, Teng C, Chen X, Park SY, Liu L, Gallego-Bartolome J, Liu W, Henderson IR, Meyers BC, Ausin I, Jacobsen SE (2015) A one precursor one siRNA model for Pol IV-dependent siRNA biogenesis. Cell 163(2):445–455. https://doi.org/10.1016/j.cell.2015.09.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coruh C, Cho SH, Shahid S, Liu Q, Wierzbicki A, Axtell MJ (2015) Comprehensive annotation of Physcomitrella patens small RNA loci reveals that the heterochromatic short interfering RNA pathway is largely conserved in land plants. Plant Cell 27(8):2148–2162. https://doi.org/10.1105/tpc.15.00228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fei Q, Xia R, Meyers BC (2013) Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25(7):2400–2415. https://doi.org/10.1105/tpc.113.114652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Onodera Y, Haag JR, Ream T, Costa Nunes P, Pontes O, Pikaard CS (2005) Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120(5):613–622. https://doi.org/10.1016/j.cell.2005.02.007

    Article  CAS  PubMed  Google Scholar 

  31. Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park HS, Vazquez F, Robertson D, Meins F Jr, Hohn T, Pooggin MM (2006) Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34(21):6233–6246. https://doi.org/10.1093/nar/gkl886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blevins T (2017) Northern blotting techniques for small RNAs. Methods Mol Biol 1456:141–162. https://doi.org/10.1007/978-1-4899-7708-3_12

    Article  CAS  PubMed  Google Scholar 

  33. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chandrasekhara C, Mohannath G, Blevins T, Pontvianne F, Pikaard CS (2016) Chromosome-specific NOR inactivation explains selective rRNA gene silencing and dosage control in Arabidopsis. Genes Dev 30(2):177–190. https://doi.org/10.1101/gad.273755.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH (2009) JBrowse: a next-generation genome browser. Genome Res 19(9):1630–1638. https://doi.org/10.1101/gr.094607.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Podicheti R, Mockaitis K (2015) FEATnotator: a tool for integrated annotation of sequence features and variation, facilitating interpretation in genomics experiments. Methods 79–80:11–17. https://doi.org/10.1016/j.ymeth.2015.04.028

    Article  CAS  PubMed  Google Scholar 

  39. Stein L (2013) Generic feature format version 3. https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md

  40. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190. https://doi.org/10.1101/gr.849004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(Database issue):D1178–D1186. https://doi.org/10.1093/nar/gkr944

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Doug Rusch and Haixu Tang for helping guide the informatics analyses, as well as Ross Cocklin for generating the rdr2 dcl2/3/4 quadruple mutant. C.S.P. is an Investigator at the Howard Hughes Medical Institute (HHMI) and former Plant Investigator of the Gordon and Betty Moore Foundation (GBMF). This work was supported by the National Institutes of Health (NIH) Grant GM077590, GBMF Grant GBMF3036 (to C.S.P.), and Investigator support funding of C.S.P. from HHMI. T.B. was supported, in part, by an NIH Ruth L. Kirschstein National Research Service Award. T.B. is currently supported by the LabEx consortium ANR-10-LABX-0036_NETRNA (“Investissements d’Avenir”) and by the French Agence Nationale de la Recherche (ANR) Grant ANR-17-CE20-0004-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Blevins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Blevins, T., Podicheti, R., Pikaard, C.S. (2019). Analysis of siRNA Precursors Generated by RNA Polymerase IV and RNA-Dependent RNA Polymerase 2 in Arabidopsis. In: Chekanova, J.A., Wang, HL.V. (eds) Plant Long Non-Coding RNAs. Methods in Molecular Biology, vol 1933. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9045-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9045-0_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9044-3

  • Online ISBN: 978-1-4939-9045-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics