Skip to main content

Plant miRNA Conservation and Evolution

  • Protocol
  • First Online:
Plant MicroRNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1932))

Abstract

Plant microRNAs do not only perform important roles in development; they also have a fascinating evolutionary dynamics. Their genes appear to originate at quite a high rate during evolution, but most of them evolve initially in an almost neutral way and hence also get lost quite rapidly. Despite the high birth and death rate, a few miRNA-encoding genes got involved in the control of important target genes and thus have been conserved during evolution. This happened obviously at all times and taxonomic levels during land plant evolution. Consequently, the genomes of extant plant species contain a mix of miRNA-encoding genes of different ages, ranging from very young, often even species-specific loci to genes that had already been established in the stem group of extant land plants more than 400 million years ago. It could well be that the evolutionary dynamics of miRNA-encoding genes contributed substantially to the evolution of developmental plasticity in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Axtell MJ, Meyers BC (2018) Revisiting criteria for plant microRNA annotation in the era of big data. Plant Cell 30:272–284

    Article  CAS  Google Scholar 

  2. Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383–2399

    Article  CAS  Google Scholar 

  3. Achkar NP, Cambiagno DA, Manavella PA (2016) miRNA biogenesis: a dynamic pathway. Trends Plant Sci 21:1034–1044

    Article  CAS  Google Scholar 

  4. Thieme CJ, Gramzow L, Lobbes D, Theißen G (2011) SplamiR – prediction of spliced miRNAs in plants. Bioinformatics 27:1215–1223

    Article  CAS  Google Scholar 

  5. Jones-Rhoades MW (2012) Conservation and divergence of plant microRNAs. Plant Mol Biol 80:3–16

    Article  CAS  Google Scholar 

  6. Nozawa M, Miura S, Nei M (2012) Origins and evolution of microRNA genes in plant species. Genome Biol Evol 4:230–239

    Article  Google Scholar 

  7. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2:e219

    Article  Google Scholar 

  8. Taylor RS, Tarver JE, Hiscock SJ, Donoghue PCJ (2014) Evolutionary history of plant microRNAs. Trends Plant Sci 19:175–182

    Article  CAS  Google Scholar 

  9. Fahlgren N, Jogdeo S, Kasschau KD, Sullivan CM, Chapman EJ, Laubinger S, Smith LM, Dasenko M, Givan SA, Weigel D, Carrington JC (2010) MicroRNA evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell 22:1074–1089

    Article  CAS  Google Scholar 

  10. Cuperus JT, Fahlgren N, Carrington JA (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442

    Article  CAS  Google Scholar 

  11. Chávez Montes RA, Rosas-Cárdenas FF, De Paoli E, Accerbi M, Rymarquis LA, Mahalingam G, Marsch-Martinez N, Meyers BC, Green PJ, de Folter S (2014) Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nat Commun 5:3722

    Article  Google Scholar 

  12. de Rosas-Cardenas F, de Folter S (2017) Conservation, divergence, and abundance of miRNAs and their effect in plants. In: Rajewski N et al (eds) Plant epigenetics, RNA technologies. Springer International Publishing AG, New York, pp 1–22

    Google Scholar 

  13. Cui J, You C, Chen X (2017) The evolution of microRNAs in plants. Curr Opin Plant Biol 35:61–67

    Article  CAS  Google Scholar 

  14. Rubio-Somoza I, Weigel D (2011) MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 16:258–264

    Article  CAS  Google Scholar 

  15. D’Ario M, Griffiths-Jones S, Kim M (2017) Small RNAs: big impact on plant development. Trends Plant Sci 22:1056–1068

    Article  Google Scholar 

  16. Felippes FF, Schneeberger K, Dezulian T, Huson DH, Weigel D (2008) Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA 14:2455–2459

    Article  Google Scholar 

  17. Piriyapongsa J, Marino-Ramirez L, Jordan IK (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176:1323–1337

    Article  CAS  Google Scholar 

  18. Piriyapongsa J, Jordan IK (2008) Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14:814–821

    Article  CAS  Google Scholar 

  19. Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW, Carrington JC (2004) Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36:1282–1290

    Article  CAS  Google Scholar 

  20. Luo Y, Guo Z, Li L (2013) Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev Biol 380:133–144

    Article  CAS  Google Scholar 

  21. Spanudakis E, Jackson S (2014) The role of microRNAs in the control of flowering time. J Exp Bot 65:365–380

    Article  CAS  Google Scholar 

  22. Hoffmeier A, Gramzow L, Bhide A, Kottenhagen N, Greifenstein A, Schubert O, Mummenhoff K, Becker A, Theißen G (2018) A dead gene walking: convergent degeneration of a clade of MADS-box genes in Crucifers. Mol Biol Evol 35:2618–2638

    Google Scholar 

  23. Kumar S, Stecher G, Suleski M, Hedges SB (2017) TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol 34:1812–1819

    Article  CAS  Google Scholar 

  24. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Stefan de Folter for his kind invitation to write this chapter. We dedicate this paper to Mirna Gramzow, a cute little girl with a strange given name.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Theißen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gramzow, L., Theißen, G. (2019). Plant miRNA Conservation and Evolution. In: de Folter, S. (eds) Plant MicroRNAs. Methods in Molecular Biology, vol 1932. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9042-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9042-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9041-2

  • Online ISBN: 978-1-4939-9042-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics