Skip to main content

Detection of MicroRNA Processing Intermediates Through RNA Ligation Approaches

  • Protocol
  • First Online:
Plant MicroRNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1932))

Abstract

MicroRNAs (miRNA) are small RNAs of 20–22 nt that regulate diverse biological pathways through the modulation of gene expression. miRNAs recognize target RNAs by base complementarity and guide them to degradation or translational arrest. They are transcribed as longer precursors with extensive secondary structures. In plants, these precursors are processed by a complex harboring DICER-LIKE1 (DCL1), which cuts on the precursor stem region to release the mature miRNA together with the miRNA*. In both plants and animals, the miRNA precursors contain spatial clues that determine the position of the miRNA along their sequences. DCL1 is assisted by several proteins, such as the double-stranded RNA binding protein, HYPONASTIC LEAVES1 (HYL1), and the zinc finger protein SERRATE (SE). The precise biogenesis of miRNAs is of utter importance since it determines the exact nucleotide sequence of the mature small RNAs and therefore the identity of the target genes. miRNA processing itself can be regulated and therefore can determine the final small RNA levels and activity. Here, we describe methods to analyze miRNA processing intermediates in plants. These approaches can be used in wild-type or mutant plants, as well as in plants grown under different conditions, allowing a molecular characterization of the miRNA biogenesis from the RNA precursor perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503

    Article  CAS  PubMed  Google Scholar 

  2. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    Article  CAS  PubMed  Google Scholar 

  3. Axtell MJ (2008) Evolution of microRNAs and their targets: are all microRNAs biologically relevant? Biochim Biophys Acta 1779:725–734

    Article  CAS  PubMed  Google Scholar 

  4. Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  CAS  PubMed  Google Scholar 

  6. Rodriguez RE, Schommer C, Palatnik JF (2016) Control of cell proliferation by microRNAs in plants. Curr Opin Plant Biol 34:68–76

    Article  CAS  PubMed  Google Scholar 

  7. Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC (2005) Expression of Arabidopsis MIRNA genes. Plant Physiol 138:2145–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Auyeung Vincent C, Ulitsky I, McGeary Sean E, Bartel David P (2013) Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing. Cell 152:844–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Han MH, Goud S, Song L, Fedoroff N (2004) The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc Natl Acad Sci U S A 101:1093–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vazquez F, Gasciolli V, Crete P, Vaucheret H (2004) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14:346–351

    Article  CAS  PubMed  Google Scholar 

  15. Lobbes D, Rallapalli G, Schmidt DD, Martin C, Clarke J (2006) SERRATE: a new player on the plant microRNA scene. EMBO Rep 7:1052–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang L, Liu Z, Lu F, Dong A, Huang H (2006) SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 47:841–850

    Article  CAS  PubMed  Google Scholar 

  17. Gregory BD, O’Malley RC, Lister R, Urich MA, Tonti-Filippini J, Chen H, Millar AH, Ecker JR (2008) A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell 14:854–866

    Article  CAS  PubMed  Google Scholar 

  18. Laubinger S, Sachsenberg T, Zeller G, Busch W, Lohmann JU, Ratsch G, Weigel D (2008) Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc Natl Acad Sci U S A 105:8795–8800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim S, Yang J-Y, Xu J, Jang I-C, Prigge MJ, Chua N-H (2008) Two cap-binding proteins CBP20 and CBP80 are involved in processing primary MicroRNAs. Plant Cell Physiol 49:1634–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ren G, Xie M, Dou Y, Zhang S, Zhang C, Yu B (2012) Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc Natl Acad Sci U S A 109:12817–12821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu B, Bi L, Zheng B, Ji L, Chevalier D, Agarwal M, Ramachandran V, Li W, Lagrange T, Walker JC, Chen X (2008) The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci U S A 105:10073–10078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Z, Guo X, Ge C, Ma Z, Jiang M, Li T, Koiwa H, Yang SW, Zhang X (2017) KETCH1 imports HYL1 to nucleus for miRNA biogenesis in Arabidopsis. Proc Natl Acad Sci U S A 114:4011–4016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Manavella PA, Hagmann J, Ott F, Laubinger S, Franz M, Macek B, Weigel D (2012) Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell 151:859–870

    Article  CAS  PubMed  Google Scholar 

  24. Axtell MJ, Westholm JO, Lai EC (2011) Vive la difference: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12:221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901

    Article  CAS  PubMed  Google Scholar 

  26. Bologna NG, Mateos JL, Bresso EG, Palatnik JF (2009) A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J 28:3646–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mateos JL, Bologna NG, Chorostecki U, Palatnik JF (2010) Identification of microRNA processing determinants by random mutagenesis of Arabidopsis MIR172a precursor. Curr Biol 20:49–54

    Article  CAS  PubMed  Google Scholar 

  28. Song L, Axtell MJ, Fedoroff NV (2010) RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr Biol 20:37–41

    Article  CAS  PubMed  Google Scholar 

  29. Werner S, Wollmann H, Schneeberger K, Weigel D (2010) Structure determinants for accurate processing of miR172a in Arabidopsis thaliana. Curr Biol 20:42–48

    Article  CAS  PubMed  Google Scholar 

  30. Bologna NG, Schapire AL, Zhai J, Chorostecki U, Boisbouvier J, Meyers BC, Palatnik JF (2013) Multiple RNA recognition patterns during microRNA biogenesis in plants. Genome Res 23:1675–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chorostecki U, Moro B, Rojas ALM, Debernardi JM, Schapire AL, Notredame C, Palatnik J (2017) Evolutionary footprints reveal insights into plant microRNA biogenesis. Plant Cell 29:1248–1261

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim W, Kim H-E, Jun AR, Jung MG, Jin S, Lee J-H, Ahn JH (2016) Structural determinants of miR156a precursor processing in temperature-responsive flowering in Arabidopsis. J Exp Bot 67:4659–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A 101:12753–12758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Addo-Quaye C, Snyder JA, Park YB, Li YF, Sunkar R, Axtell MJ (2009) Sliced microRNA targets and precise loop-first processing of MIR319 hairpins revealed by analysis of the Physcomitrella patens degradome. RNA 15:2112–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bologna NG, Schapire AL, Palatnik JF (2013) Processing of plant microRNA precursors. Brief Funct Genomics 12:37–45

    Article  CAS  PubMed  Google Scholar 

  36. Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12:206–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schapire AL, Bologna NG, Moro B, Zhai J, Meyers BC, Palatnik JF (2013) Construction of Specific Parallel Amplification of RNA Ends (SPARE) libraries for the systematic identification of plant microRNA processing intermediates. Methods 64:283–291

    Article  CAS  PubMed  Google Scholar 

  38. Moro B, Chorostecki U, Arikit S, Suarez IP, Höbartner C, Rasia RM, Meyers BC, Palatnik JF (2018) Efficiency and precision of microRNA biogenesis modes in plants. Nucleic acids research 46(20):10709–10723. https://doi.org/10.1093/nar/gky853

  39. Classic Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  Google Scholar 

  40. Hang R, Deng X, Liu C, Mo B, Cao X (2015) Circular RT-PCR assay using arabidopsis samples. Bio-protocol 5:e1533. https://doi.org/10.21769/BioProtoc.1533

    Article  Google Scholar 

  41. Basyuk E, Suavet F, Doglio A, Bordonne R, Bertrand E (2003) Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res 31:6593–6597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Supported by grants of Argentinean Ministry of Science, PICT-2015-3557 and PICT-2016-0761 to J.P. CONICET fellowships to B.M. and A.M.L.R.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Belén Moro or Javier F. Palatnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Moro, B., Rojas, A.M.L., Palatnik, J.F. (2019). Detection of MicroRNA Processing Intermediates Through RNA Ligation Approaches. In: de Folter, S. (eds) Plant MicroRNAs. Methods in Molecular Biology, vol 1932. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9042-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9042-9_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9041-2

  • Online ISBN: 978-1-4939-9042-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics