Skip to main content

The Use of Complementary Luminescent and Fluorescent Techniques for Imaging Ca2+ Signaling Events During the Early Development of Zebrafish (Danio rerio)

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1929))

Abstract

We have visualized many of the Ca2+ signaling events that occur during the early stages of zebrafish development using complementary luminescent and fluorescent imaging techniques. We initially microinject embryos with the luminescent Ca2+ reporter, f-holo-aequorin, and using a custom-designed luminescent imaging system, we can obtain pan-embryonic visual information continually for up to the first ~24 h postfertilization (hpf). Once we know approximately when and where to look for these Ca2+ signaling events within a complex developing embryo, we then repeat the experiment using a fluorescent Ca2+ reporter such as calcium green-1 dextran and use confocal laser scanning microscopy to provide time-lapse series of higher-resolution images. These protocols allow us to identify the specific cell types and even the particular subcellular domain (e.g., nucleus or cytoplasm) generating the Ca2+ signal. Here, we outline the techniques we use to precisely microinject f-holo-aequorin or calcium green-1 dextran into embryos without affecting their viability or development. We also describe how to inject specific regions of early embryos in order to load localized embryonic domains with a particular Ca2+ reporter. These same techniques can also be used to introduce other membrane-impermeable reagents into embryos, including Ca2+ channel antagonists, Ca2+ chelators, fluorescent dyes, RNA, and DNA.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jaffe LF (1999) Organization of early development by calcium patterns. BioEssays 21:657–667

    Article  CAS  Google Scholar 

  2. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signaling. Nature Rev Mol Cell Biol 1:11–21

    Article  CAS  Google Scholar 

  3. Webb SE, Miller AL (2003) Calcium signaling during embryonic development. Nature Rev Mol Cell Biol 4:539–551

    Article  CAS  Google Scholar 

  4. Porter GA Jr, Makuck RF, Rivkees SA (2003) Intracellular calcium plays an essential role in cardiac development. Dev Dyn 227:280–290

    Article  CAS  Google Scholar 

  5. Whitaker M (2006) Calcium at fertilization and in early development. Physiol Rev 86:25–88

    Article  CAS  Google Scholar 

  6. Slusarski DC, Pelegri F (2007) Calcium signaling in vertebrate embryonic patterning and morphogenesis. Dev Biol 307:1–13

    Article  CAS  Google Scholar 

  7. Rosenberg SS, Spitzer NC (2011) Calcium signaling in neuronal development. Cold Spring Harb Perspec Biol 3(10):a004259. https://doi.org/10.1101/cshperspect.a004259

    Article  CAS  Google Scholar 

  8. Zhang J, Webb SE, Ma LH, Chan CM, Miller AL (2011) Necessary role for intracellular Ca2+ transients in initiating the apical-basolateral thinning of enveloping layer cells during the early blastula period of zebrafish development. Develop Growth Diff 53:679–696

    Article  CAS  Google Scholar 

  9. Kelu JJ, Webb SE, Parrington J, Galione A, Miller AL (2017) Ca2+ release via two-pore channel type 2 (TPC2) is required for slow muscle cell myofibrillogenesis and myotomal patterning in intact zebrafish embryos. Dev Biol 425:109–129

    Article  CAS  Google Scholar 

  10. Brownlee C, Dale B (1990) Temporal and spatial correlation of fertilization current, calcium waves and cytoplasmic contraction in eggs of Ciona intestinalis. Proc R Soc Lond B 239:321–328

    Article  CAS  Google Scholar 

  11. Fluck RA, Miller AL, Jaffe LF (1991) Slow calcium waves accompany cytokinesis in medaka fish eggs. J Cell Biol 115:1259–1265

    Article  CAS  Google Scholar 

  12. Homa ST, Carroll J, Swann K (1993) Fertilization and early embryology: the role of calcium in mammalian oocyte maturation and egg activation. Hum Reprod 8:1274–1281

    Article  CAS  Google Scholar 

  13. Swann K, McDougall A, Whitaker M (1994) Calcium signalling at fertilization. J Mar Biol Assoc UK 74:3–16

    Article  Google Scholar 

  14. Chang DC, Meng C (1995) A localized elevation of cytosolic free calcium is associated with cytokinesis in the zebrafish embryo. J Cell Biol 131:1539–1545

    Article  CAS  Google Scholar 

  15. Webb SE, Lee KW, Karplus E, Miller AL (1997) Localized calcium transients accompany furrow positioning, propagation, and deepening during the early cleavage period of zebrafish embryos. Dev Biol 192:78–92

    Article  CAS  Google Scholar 

  16. Leung CF, Webb SE, Miller AL (1998) Calcium transients accompany ooplasmic segregation in zebrafish embryos. Develop Growth Differ 40:313–326

    Article  CAS  Google Scholar 

  17. Créton R, Kreiling JA, Jaffe LF (2000) Presence and roles of calcium gradients along the dorsal-ventral axis in Drosophila embryos. Dev Biol 217:375–385

    Article  Google Scholar 

  18. Whitaker M (2008) Calcium signalling in early embryos. Phil Trans Royal Soc B 363:1401–1418

    Article  CAS  Google Scholar 

  19. Gilland E, Miller AL, Karplus E, Baker R, Webb SE (1999) Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation. Proc Natl Acad Sci U S A 96:157–161

    Article  CAS  Google Scholar 

  20. Leclerc C, Webb SE, Daguzan C, Moreau M, Miller AL (2000) Imaging patterns of calcium transients during neural induction in Xenopus laevis embryos. J Cell Sci 113:3519–3529

    CAS  PubMed  Google Scholar 

  21. Tada M, Concha ML (2001) Vertebrate gastrulation: calcium waves orchestrate cell movements. Curr Biol 11:R470–R472

    Article  CAS  Google Scholar 

  22. Wallingford JB, Ewald AJ, Harland RM, Fraser SE (2001) Calcium signaling during convergent extension in Xenopus. Curr Biol 11:652–661

    Article  CAS  Google Scholar 

  23. Rogers KL, Picaud S, Roncali E, Boisgard R, Colasant C, Stinnakre J, Tavatian B, Brûlet P (2007) Non-invasive in vivo imaging of calcium signaling in mice. PLoS One 2:e974

    Article  Google Scholar 

  24. Leung CF, Miller AL, Korzh V, Cong SW, Sleptsova-Friedrich I, Webb SE (2009) Visualization of stochastic Ca2+ signals in the formed somites during the early segmentation period in intact, normally developing zebrafish embryos. Develop Growth Differ 51:617–637

    Article  CAS  Google Scholar 

  25. Cheung CY, Webb SE, Love DR, Miller AL (2011) Visualization, characterization and modulation of calcium signaling during the development of slow muscle cells in intact zebrafish embryos. Int J Dev Biol 55:153–174

    Article  CAS  Google Scholar 

  26. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  Google Scholar 

  27. Campbell AK (1974) Extraction, partial purification and properties of obelin, the calcium-activated luminescent protein from the hydroid Obelia geniculata. Biochem J 143:411–418

    Article  CAS  Google Scholar 

  28. Markova SV, Vysotski ES, Blinks JR, Burakova LP, Wang B-C, Lee J (2002) Obelin from the bioluminescent marine hydroid Obelia geniculata: cloning, expression, and comparison of some properties with those of other Ca2+-regulated photoproteins. Biochemist 41:2227–2236

    Article  CAS  Google Scholar 

  29. Inouye S, Sahara Y (2007) Expression, purification and characterization of a photoprotein, clytin, from Clytia gregarium. Protein Expr Purif 53:384–389

    Article  CAS  Google Scholar 

  30. Inouye S, Sahara Y (2009) Expression and purification of the calcium binding photoprotein mitrocomin using ZZ-domain as a soluble partner in E. coli cells. Protein Expr Purif 66:52–57

    Article  CAS  Google Scholar 

  31. Burakova LP, Natashin PV, Markova SV, Eremeeva EV, Malikova NP, Cheng C, Liu ZJ, Vysotski ES (2016) Mitrocomin from the jellyfish Mitrocoma cellularia with deleted C-terminal tyrosine reveals a higher bioluminescence activity compared to wild type photoprotein. J Photochem Photobiol B 162:286–297

    Article  CAS  Google Scholar 

  32. Shimomura O, Johnson FH (1975) Chemical nature of bioluminescence systems in coelenterates. Proc Natl Acad Sci U S A 72:1546–1549

    Article  CAS  Google Scholar 

  33. Shimomura O, Johnson FH (1978) Peroxidized coelenterazine, the active group in the photoprotein aequorin. Proc Natl Acad Sci U S A 75:2611–2615

    Article  CAS  Google Scholar 

  34. Shimomura O, Musicki B, Kishi Y (1988) Semi-synthetic aequorin: an improved tool for the measurement of calcium ion concentration. Biochem J 251:405–410

    Article  CAS  Google Scholar 

  35. Shimomura O, Musicki B, Kishi Y (1989) Semi-synthetic aequorins with improved sensitivity to Ca2+ ions. Biochem J 261:913–920

    Article  CAS  Google Scholar 

  36. Shimomura O, Inouye S, Musicki B, Kishi Y (1990) Recombinant aequorin and recombinant semi-synthetic aequorin. Biochem J 270:309–312

    Article  CAS  Google Scholar 

  37. Inouye S, Noguchi M, Sakari Y, Takagi Y, Miyata T, Iwanaga S, Miyata T, Tsuji FI (1985) Cloning and sequence analysis of cDNA for the luminescent protein aequorin. Proc Natl Acad Sci U S A 82:3154–3158

    Article  CAS  Google Scholar 

  38. Prasher D, McCann RO, Cormier MJ (1985) Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein. Biochem Biophys Res Comm 126:1259–1268

    Article  CAS  Google Scholar 

  39. Shimomura O, Inouye S (1999) The in situ regeneration and extraction of recombinant aequorin from Escherichia coli cells and the purification of extracted aequorin. Prot Express Purific 16:91–95

    Article  CAS  Google Scholar 

  40. Higashijima S, Masino MA, Mandel G, Fetcho JR (2003) Imaging neuronal activity during zebrafish behaviour with a genetically encoded calcium indicator. J Neurophysiol 90:3987–3997

    Article  Google Scholar 

  41. Ashworth R, Brennan C (2005) Use of transgenic zebrafish reporter lines to study calcium signalling in development. Brief Funct Gen Proteo 4:186–193

    Article  CAS  Google Scholar 

  42. Horikawa K, Yamada Y, Matsuda T, Kobayashi K, Hashimoto M, Matsu-ura T, Miyawaki A, Michikawa T, Mikoshiba K, Nagai T (2010) Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nature Meth 7:729–732

    Article  CAS  Google Scholar 

  43. Muto A, Kawakami K (2011) Imaging functional neural circuits in zebrafish with a new GCaMP and the Gal4FF-UAS system. Commun Integr Biol 4:566–568

    Article  CAS  Google Scholar 

  44. Chen J, Xia L, Bruchas MR, Solnica-Krezel L (2017) Imaging early embryonic calcium activity with GCaMP6s transgenic zebrafish. Dev Biol 430:385–396

    Article  CAS  Google Scholar 

  45. Yuen MYF, Webb SE, Chan CM, Thisse B, Thisse C, Miller AL (2013) Characterization of Ca2+ signaling in the external yolk syncytial layer during the late blastula and early gastrula periods of zebrafish development. Biochim Biophys Acta 1833:1641–1656

    Article  CAS  Google Scholar 

  46. Ma LH, Webb SE, Chan CM, Zhang J, Miller AL (2009) Establishment of a transitory dorsal-biased window of localized Ca2+ signaling in the superficial epithelium following the mid-blastula transition in zebrafish embryos. Dev Biol 327:143–157

    Article  CAS  Google Scholar 

  47. Webb SE, Miller AL (2003) Imaging intercellular calcium waves during late epiboly in intact zebrafish embryos. Zygote 11:175–182

    Article  CAS  Google Scholar 

  48. Roosen-Runge EC (1938) On the early development-bipolar differentiation and cleavage of the zebrafish, Brachydanio rerio. Biol Bull 75:119–133

    Article  Google Scholar 

  49. Beams HW, Kessel RG, Shim CY, Tung HN (1985) Scanning electron microscope studies on blastodisc formation in zebrafish, Brachydanio rerio. J Morphol 189:41–49

    Article  Google Scholar 

  50. Cheung CY, Webb SE, Meng A, Miller AL (2006) Transient expression of apoaequorin in zebrafish embryos: extending the ability to image calcium transients during later stages of development. Int J Dev Biol 50:561–569

    Article  CAS  Google Scholar 

  51. Webb SE, Miller AL (2007) Ca2+ signalling during embryonic cytokinesis in animal systems. In: Krebs J, Michalak M (eds) Calcium: a matter of life and death, vol 17. Elsevier, Amsterdam, Netherlands, pp 443–468

    Google Scholar 

  52. Lee KW, Webb SE, Miller AL (2003) Ca2+ released via IP3 receptors is required for furrow deepening during cytokinesis in zebrafish embryos. Int J Dev Biol 47:411–421

    CAS  PubMed  Google Scholar 

  53. Kelu JJ, Chan HLH, Webb SE, Cheng AHH, Ruas M, Parrington J, Galione A, Miller AL (2015) Two-pore channel 2 activity is required for slow muscle cell-generated Ca2+ signaling during myogenesis in intact zebrafish. Int J Dev Biol 59:313–325

    Article  CAS  Google Scholar 

  54. Kelu JJ, Webb SE, Galione A, Miller AL (2018) TPC2-mediated Ca2+ signalling is required for the establishment of synchronized activity in developing zebrafish primary motor neurons. Dev Biol 438(1):57–68

    Article  CAS  Google Scholar 

  55. Bonsignorio D, Perego L, Del Giacco L, Cotelli F (1996) Structure and macromolecular composition of the zebrafish egg chorion. Zygote 4:101–108

    Article  CAS  Google Scholar 

  56. Miller AL, Karplus E, Jaffe LF (1994) Imaging Ca2+ with aequorin using a photon imaging detector. In: Nuccitelli R (ed) Methods in cell biology: a practical guide to the study of calcium in living cells, vol 40. Academic Press Inc., San Diego, CA, pp 305–338

    Chapter  Google Scholar 

  57. Webb SE, Rogers KL, Karplus E, Miller AL (2010) The use of aequorins to record and visualize Ca2+ dynamics: from subcellular microdomains to whole organisms. In: Whitaker M (ed) Methods in cell biology: calcium in living cells, vol 99. Academic Press Inc., San Diego, CA, pp 263–300

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hong Kong Research Grants Council (RGC) General Research Fund awards 16101714 and 16100115 and the ANR/RGC joint research scheme award A-HKUST601/13. We also acknowledge funding support from the Hong Kong Innovation and Technology Commission (ITCPD/17-9). We thank Andrew Ho for helping us to photograph the equipment shown in Figs. 2 and 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah E. Webb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Webb, S.E., Miller, A.L. (2019). The Use of Complementary Luminescent and Fluorescent Techniques for Imaging Ca2+ Signaling Events During the Early Development of Zebrafish (Danio rerio). In: Heizmann, C. (eds) Calcium-Binding Proteins of the EF-Hand Superfamily. Methods in Molecular Biology, vol 1929. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9030-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9030-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9029-0

  • Online ISBN: 978-1-4939-9030-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics