Skip to main content

Imaging Intracellular Ca2+ in Cardiomyocytes with Genetically Encoded Fluorescent Probes

  • Protocol
  • First Online:
Calcium Signalling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1925))

  • 2382 Accesses

Abstract

Calcium (Ca2+) is a key player in cardiomyocyte homeostasis, and its roles span from excitation-contraction coupling to metabolic and structural signaling. Alterations in the function or expression of Ca2+-handling proteins are common findings in failing cardiomyocytes, which have been linked to impaired contractility and detrimental remodeling of the cellular structure. For these reasons, the study of intracellular Ca2+ handling in cardiomyocytes represents a central method in experimental molecular cardiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245:C1–14. https://doi.org/10.1152/ajpcell.1983.245.1.C1

    Article  CAS  Google Scholar 

  2. Huxley HE (1969) The mechanism of muscular contraction. Science 164:1356–1365. https://doi.org/10.1126/science.164.3886.1356

    Article  CAS  PubMed  Google Scholar 

  3. Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262:740–744. https://doi.org/10.1126/science.8235594

    Article  CAS  PubMed  Google Scholar 

  4. Lehnart SE, Terrenoire C, Reiken S, Wehrens XHT, Song LS, Tillman EJ, Mancarella S, Coromilas J, Lederer WJ, Kass RS, Marks AR (2006) Stabilization of cardiac ryanodine receptor prevents intracellular calcium leak and arrhythmias. Proc Natl Acad Sci U S A 103:7906–7910. https://doi.org/10.1073/pnas.0602133103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wehrens XH, Lehnart SE, Huang F, Vest JA, Reiken SR, Mohler PJ, Sun J, Guatimosim S, Song LS, Rosemblit N, D'Armiento JM, Napolitano C, Memmi M, Priori SG, Lederer WJ, Marks AR (2003) FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 113:829–840. https://doi.org/10.1016/S0092-8674(03)00434-3

    Article  CAS  PubMed  Google Scholar 

  6. Lehnart SE, Wehrens XH, Laitinen PJ, Reiken SR, Deng SX, Cheng Z, Landry DW, Kontula K, Swan H, Marks AR (2004) Sudden death in familial polymorphic ventricular tachycardia associated with calcium release channel (ryanodine receptor) leak. Circulation 109:3208–3214. https://doi.org/10.1161/01.cir.0000132472.98675.ec

    Article  CAS  PubMed  Google Scholar 

  7. Williams GS, Boyman L, Chikando AC, Khairallah RJ, Lederer WJ (2013) Mitochondrial calcium uptake. Proc Natl Acad Sci U S A 110:10479–10486. https://doi.org/10.1073/pnas.1300410110

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mattiazzi A, Kranias EG (2014) The role of CaMKII regulation of phospholamban activity in heart disease. Front Pharmacol 5:5. https://doi.org/10.3389/fphar.2014.00005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Egger M, Niggli E (1999) Regulatory function of Na-Ca exchange in the heart: milestones and outlook. J Membr Biol 168:107–130. https://doi.org/10.1007/s002329900502

    Article  CAS  PubMed  Google Scholar 

  10. De Stefani D, Raffaello A, Teardo E, Szabò I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340. https://doi.org/10.1038/nature10230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345. https://doi.org/10.1038/nature10234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rudolf R, Mongillo M, Rizzuto R, Pozzan T (2003) Innvoation: looking forward to seeing calcium. Nat Rev Mol Cell Biol 4(7):579–586. https://doi.org/10.1038/nrm1153

    Article  CAS  PubMed  Google Scholar 

  13. Tsukamoto S, Fujii T, Oyama K, Shintani SA, Shimozawa T, Kobirumaki-Shimozawa F, Ishiwata S, Fukuda N (2016) Simultaneous imaging of local calcium and single sarcomere length in rat neonatal cardiomyocytes using yellow Cameleon-Nano140. J Gen Physiol 148(4):341–355. https://doi.org/10.1085/jgp.201611604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pahlavan S, Morad M (2017) Total internal reflectance fluorescence imaging of genetically engineered ryanodine receptor-targeted Ca(2+) probes in rat ventricular myocytes. Cell Calcium 66:98–110. https://doi.org/10.1016/j.ceca.2017.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kotlikoff MI (2007) Genetically encoded Ca2+indicators: using genetics and molecular design to understand complex physiology. J Physiol 578(1):55–67. https://doi.org/10.1113/jphysiol.2006.120212

    Article  CAS  PubMed  Google Scholar 

  16. Yang Y, Liu N, He Y, Liu Y, Ge L, Zou L, Song S, Xiong W, Liu X (2018) Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP. Nat Commun 9(1):1504. https://doi.org/10.1038/s41467-018-03719-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci U S A 96(5):2135–2140. https://doi.org/10.1073/pnas.96.5.2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McCombs JE, Palmer AE (2008) Measuring calcium dynamics in living cells with genetically encodable calcium indicators. Methods 46(3):152–159. https://doi.org/10.1016/j.ymeth.2008.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Perez Koldenkova V, Nagai T (2013) Genetically encoded Ca2+ indicators: Properties and evaluation. Biochim Biophys Acta 1833(7):1787–1797. https://doi.org/10.1016/j.bbamcr.2013.01.011

    Article  CAS  PubMed  Google Scholar 

  20. Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D, Tsien RY (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13(5):521–530. https://doi.org/10.1016/j.chembiol.2006.03.007

    Article  CAS  PubMed  Google Scholar 

  21. Eisner DA (2018) Ups and downs of calcium in the heart. J Physiol 596(1):19–30. https://doi.org/10.1113/jp275130

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Giulia Borile for her theoretical and technical help to develop and improve this protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Mongillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Campo, A., Mongillo, M. (2019). Imaging Intracellular Ca2+ in Cardiomyocytes with Genetically Encoded Fluorescent Probes. In: Raffaello, A., Vecellio Reane, D. (eds) Calcium Signalling. Methods in Molecular Biology, vol 1925. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9018-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9018-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9017-7

  • Online ISBN: 978-1-4939-9018-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics