Skip to main content

A High-Throughput Magnetic Nanoparticle-Based Semi-Automated Antibody Phage Display Biopanning

  • Protocol
  • First Online:
Human Monoclonal Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1904))

Abstract

Panning is a common process used for antibody selection from phage antibody libraries. There are several methods developed for a similar purpose, namely streptavidin mass spectrometry immunoassay (MSIA™) Disposable Automation Research Tips, magnetic beads, polystyrene immunotubes, and microtiter plate. The advantage of using a magnetic particle processor system is the ability to carry out phage display panning against multiple target antigens simultaneously in parallel. The system carries out the panning procedure using magnetic nanoparticles in microtiter plates. The entire incubation, wash, and elution process is then automated in this setup. The system also allows customization for the introduction of different panning stringencies. The nature of the biopanning process coupled with the limitation of the system means that minimal human intervention is required for the infection and phage packaging stage. However, the process still allows for rapid and reproducible antibody generation to be carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rami A et al (2017) An overview on application of phage display technique in immunological studies. Asian Pacific J Trop Biomed 7(7):599–602. https://doi.org/10.1016/j.apjtb.2017.06.001

    Article  Google Scholar 

  2. Frenzel A et al (2016) Phage display-derived human antibodies in clinical development and therapy. MAbs 8(7):1177–1194. https://doi.org/10.1080/19420862.2016.1212149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hust M, Dübel S (2004) Mating antibody phage display with proteomics. Trends Biotechnol 22(1):8–14. https://doi.org/10.1016/j.tibtech.2003.10.011

    Article  CAS  PubMed  Google Scholar 

  4. R Strohl W (2014) Antibody discovery: sourcing of monoclonal antibody variable domains. Curr Drug Discov Technol 11(1):3–19

    Article  Google Scholar 

  5. Zhuang G et al (2001) A kinetic model for a biopanning process considering antigen desorption and effective antigen concentration on a solid phase. J Biosci Bioeng 91(5):474–481. https://doi.org/10.1016/S1389-1723(01)80276-0

    Article  CAS  PubMed  Google Scholar 

  6. Rudnick SI et al (2011) Influence of affinity and antigen internalization on the uptake and penetration of anti-HER2 antibodies in solid tumors. Cancer Res 71(6):2250–2259. https://doi.org/10.1158/0008-5472.can-10-2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giordano RJ et al (2001) Biopanning and rapid analysis of selective interactive ligands. Nat Med 7(11):1249–1253. https://doi.org/10.1038/nm1101-1249

    Article  CAS  PubMed  Google Scholar 

  8. Chin CF et al (2016) Application of streptavidin mass spectrometric immunoassay tips for immunoaffinity based antibody phage display panning. J Microbiol Methods 120:6–14. https://doi.org/10.1016/j.mimet.2015.11.007

    Article  CAS  PubMed  Google Scholar 

  9. Hakami AR et al (2015) Non-ionic detergents facilitate non-specific binding of M13 bacteriophage to polystyrene surfaces. J Virol Methods 221:1–8. https://doi.org/10.1016/j.jviromet.2015.04.023

    Article  CAS  PubMed  Google Scholar 

  10. Elgundi Z et al (2016) The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev 122:2–19. https://doi.org/10.1016/j.addr.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  11. Ch’ng ACW et al (2016) Phage display-derived antibodies: application of recombinant antibodies for diagnostics. In: Saxena SK (ed) Proof and concepts in rapid diagnostic tests and technologies. InTech, London, pp 107–135

    Google Scholar 

  12. Ch’ng ACW et al (2018) Magnetic nanoparticle-based semi-automated panning for high-throughput antibody selection. In: Hust M, Lim TS (eds) Phage display: methods and protocols. Springer, New York, NY, pp 301–319. https://doi.org/10.1007/978-1-4939-7447-4_16

    Chapter  Google Scholar 

  13. Konthur Z et al (2010) Semi-automated magnetic bead-based antibody selection from phage display libraries. In: Kontermann R, Dübel S (eds) Antibody engineering. Springer, Berlin, pp 267–287. https://doi.org/10.1007/978-3-642-01144-3_18

    Chapter  Google Scholar 

  14. Jamshaid T et al (2016) Magnetic particles: from preparation to lab-on-a-chip, biosensors, microsystems and microfluidics applications. TrAC Trends Anal Chem 79:344–362. https://doi.org/10.1016/j.trac.2015.10.022

    Article  CAS  Google Scholar 

  15. Tayapiwatana C et al (2006) A novel approach using streptavidin magnetic bead-sorted in vivo biotinylated survivin for monoclonal antibody production. J Immunol Methods 317:1):1–1)11. https://doi.org/10.1016/j.jim.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  16. Hien TBD et al (2012) Potential application of antibody-mimicking peptides identified by phage display in immuno-magnetic separation of an antigen. J Biotechnol 161(3):213–220. https://doi.org/10.1016/j.jbiotec.2012.06.039

    Article  CAS  PubMed  Google Scholar 

  17. Lim BN et al (2014) Principles and application of antibody libraries for infectious diseases. Biotechnol Lett 36(12):2381–2392. https://doi.org/10.1007/s10529-014-1635-x

    Article  CAS  PubMed  Google Scholar 

  18. Georgiou G et al (2014) The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 32:158–168. https://doi.org/10.1038/nbt.2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Romao E et al (2016) Identification of useful nanobodies by phage display of immune single domain libraries derived from camelid heavy chain antibodies. Curr Pharm Des 22(43):6500–6518

    Article  CAS  Google Scholar 

  20. Knappik A et al (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides 1. J Mol Biol 296(1):57–86. https://doi.org/10.1006/jmbi.1999.3444

    Article  CAS  PubMed  Google Scholar 

  21. Carmen S, Jermutus L (2002) Concepts in antibody phage display. Brief Funct Genomics 1(2):189–203. https://doi.org/10.1093/bfgp/1.2.189

    Article  CAS  Google Scholar 

  22. Rosenberg AS, Sauna ZE (2017) Immunogenicity assessment during the development of protein therapeutics. J Pharm Pharmacol 70(5):584–594. https://doi.org/10.1111/jphp.12810

    Article  CAS  PubMed  Google Scholar 

  23. Fang X et al (2007) Automation of nucleic acid isolation on KingFisher magnetic particle processors. J Assoc Lab Autom 12(4):195–201. https://doi.org/10.1016/j.jala.2007.05.001

    Article  CAS  Google Scholar 

  24. Hanes J et al (2000) Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 18:1287–1292. https://doi.org/10.1038/82407

    Article  CAS  PubMed  Google Scholar 

  25. Hallborn J, Carlsson R (2002) Automated screening procedure for high-throughput generation of antibody fragments. BioTechniques 33:S30–S37

    Article  Google Scholar 

  26. Schwenk JM et al (2007) Determination of binding specificities in highly multiplexed bead-based assays for antibody proteomics. Mol Cell Proteomics 6(1):125–132. https://doi.org/10.1074/mcp.T600035-MCP200

    Article  CAS  PubMed  Google Scholar 

  27. Behrens CR, Liu B (2014) Methods for site-specific drug conjugation to antibodies. MAbs 6(1):46–53. https://doi.org/10.4161/mabs.26632

    Article  PubMed  Google Scholar 

  28. Ta HT et al (2012) Enzymatic antibody tagging: toward a universal biocompatible targeting tool. Trends Cardiovasc Med 22(4):105–111. https://doi.org/10.1016/j.tcm.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  29. Liu B et al (2002) Towards proteome-wide production of monoclonal antibody by phage display. J Mol Biol 315(5):1063–1073. https://doi.org/10.1006/jmbi.2001.5276

    Article  CAS  PubMed  Google Scholar 

  30. Walter G et al (2001) High-throughput screening of surface displayed gene products. Comb Chem High Throughput Screen 4(2):193–205. https://doi.org/10.2174/1386207013331228

    Article  CAS  PubMed  Google Scholar 

  31. Turunen L et al (2009) Automated panning and screening procedure on microplates for antibody generation from phage display libraries. J Biomol Screen 14(3):282–293. https://doi.org/10.1177/1087057108330113

    Article  CAS  PubMed  Google Scholar 

  32. Rondot S et al (2001) A helper phage to improve single-chain antibody presentation in phage display. Nat Biotechnol 19(1):75–78. https://doi.org/10.1038/83567

    Article  CAS  PubMed  Google Scholar 

  33. Smeal SW et al (2017) Simulation of the M13 life cycle I: assembly of a genetically-structured deterministic chemical kinetic simulation. Virology 500:259–274. https://doi.org/10.1016/j.virol.2016.08.017

    Article  CAS  PubMed  Google Scholar 

  34. Nakano K et al (2017) E. coli mismatch repair enhances AT-to-GC mutagenesis caused by alkylating agents. Mutat Res 815:22–27. https://doi.org/10.1016/j.mrgentox.2017.02.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from the Malaysian Ministry of Education under the Higher Institution Centre of Excellence (HICoE) Grant (Grant no. 311/CIPPM/44001005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theam Soon Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ch’ng, A.C.W., Ahmad, A., Konthur, Z., Lim, T.S. (2019). A High-Throughput Magnetic Nanoparticle-Based Semi-Automated Antibody Phage Display Biopanning. In: Steinitz, M. (eds) Human Monoclonal Antibodies. Methods in Molecular Biology, vol 1904. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8958-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8958-4_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8957-7

  • Online ISBN: 978-1-4939-8958-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics