Skip to main content

Drosophila Genetics: The Power of Genetic Mosaic Approaches

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1893))

Abstract

Drosophila melanogaster has been a central player in the discovery of the Hippo pathway and in understanding its in vivo functions. From a technique standpoint, the Flp-FRT system for the generation of genetic mosaics has been a principle tool. It has broadly been used in the discovery of Hippo pathway members in mutagenesis screens, in the analysis of target gene expression, and in genetic epistasis. Here we briefly introduce this tool, summarize its use in the Hippo pathway field, and provide a protocol for the generation of Flp-FRT clones in imaginal discs with dissection and staining for reporter gene expression to characterize candidate Hippo pathway genes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rong YS, Golic KG (2003) The homologous chromosome is an effective template for the repair of mitotic DNA double-strand breaks in Drosophila. Genetics 165:1831–1842

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59:499–509

    Article  CAS  Google Scholar 

  3. Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117:1223–1237

    CAS  PubMed  Google Scholar 

  4. Germani F, Bergantinos C, Johnston L (2018) Mosaic analysis in Drosophila. Genetics 208:473–490. https://doi.org/10.1534/genetics.117.300256

    Article  CAS  PubMed  Google Scholar 

  5. Xu T, Wang W, Zhang S et al (1995) Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121:1053–1063

    CAS  PubMed  Google Scholar 

  6. Justice RW, Zilian O, Woods DF et al (1995) The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 9:534–546

    Article  CAS  Google Scholar 

  7. Kango-Singh M, Nolo R, Tao C et al (2002) Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129:5719–5730

    Article  CAS  Google Scholar 

  8. Tapon N, Harvey KF, Bell DW et al (2002) salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110:467–478. https://doi.org/10.1016/S0092-8674(02)00824-3

    Article  CAS  PubMed  Google Scholar 

  9. Harvey KF, Pfleger CM, Hariharan IK (2003) The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114:457–467

    Article  CAS  Google Scholar 

  10. Jia J, Zhang W, Wang B et al (2003) The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev 17:2514–2519. https://doi.org/10.1101/gad.1134003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Udan RS, Kango-Singh M, Nolo R et al (2003) Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol 5:914–920. https://doi.org/10.1038/ncb1050

    Article  CAS  PubMed  Google Scholar 

  12. Wu S, Huang J, Dong J, Pan D (2003) Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114:445–456. https://doi.org/10.1016/S0092-8674(03)00549-X

    Article  CAS  PubMed  Google Scholar 

  13. Pantalacci S, Tapon N, Léopold P (2003) The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol 5:921–927. https://doi.org/10.1038/ncb1051

    Article  CAS  PubMed  Google Scholar 

  14. Hamaratoglu F, Willecke M, Kango-Singh M et al (2006) The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 8:27–36. https://doi.org/10.1038/ncb1339

    Article  CAS  PubMed  Google Scholar 

  15. Genevet A, Wehr M, Brain R et al (2010) Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev Cell 18:300–308. https://doi.org/10.1016/j.devcel.2009.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ling C, Zheng Y, Yin F et al (2010) The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc Natl Acad Sci U S A 107:10532–10537. https://doi.org/10.1073/pnas.1004279107

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yu J, Zheng Y, Dong J et al (2010) Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell 18:288–299. https://doi.org/10.1016/j.devcel.2009.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Willecke M, Hamaratoglu F, Kango-Singh M et al (2006) The fat cadherin acts through the hippo tumor-suppressor pathway to regulate tissue size. Curr Biol 16:2090–2100. https://doi.org/10.1016/j.cub.2006.09.005

    Article  CAS  PubMed  Google Scholar 

  19. Silva E, Tsatskis Y, Gardano L et al (2006) The tumor-suppressor gene fat controls tissue growth upstream of expanded in the hippo signaling pathway. Curr Biol 16:2081–2089. https://doi.org/10.1016/j.cub.2006.09.004

    Article  CAS  PubMed  Google Scholar 

  20. He Y, Emoto K, Fang X et al (2005) Drosophila Mob family proteins interact with the related tricornered (Trc) and warts (Wts) kinases. Mol Biol Cell 16:4139–4152. https://doi.org/10.1091/mbc.E05-01-0018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lai Z-C, Wei X, Shimizu T et al (2005) Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120:675–685. https://doi.org/10.1016/j.cell.2004.12.036

    Article  CAS  PubMed  Google Scholar 

  22. Bennett FC, Harvey KF (2006) Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr Biol 16:2101–2110. https://doi.org/10.1016/j.cub.2006.09.045

    Article  CAS  PubMed  Google Scholar 

  23. Huang J, Wu S, Barrera J et al (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122:421–434. https://doi.org/10.1016/j.cell.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  24. Nolo R, Morrison CM, Tao C et al (2006) The bantam microRNA is a target of the hippo tumor-suppressor pathway. Curr Biol 16:1895–1904. https://doi.org/10.1016/j.cub.2006.08.057

    Article  CAS  PubMed  Google Scholar 

  25. Thompson B, Cohen S (2006) The Hippo Pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126:767–774. https://doi.org/10.1016/j.cell.2006.07.013

    Article  CAS  PubMed  Google Scholar 

  26. Neto-Silva RM, de Beco S, Johnston LA (2010) Evidence for a growth-stabilizing regulatory feedback mechanism between Myc and Yorkie, the Drosophila homolog of Yap. Dev Cell 19:507–520. https://doi.org/10.1016/j.devcel.2010.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Katsukawa M, Ohsawa S, Zhang L et al (2018) Serpin facilitates tumor-suppressive cell competition by blocking toll-mediated Yki activation in Drosophila. Curr Biol 28:1756–1767.e6. https://doi.org/10.1016/j.cub.2018.04.022

    Article  CAS  PubMed  Google Scholar 

  28. Suijkerbuijk SJ, Kolahgar G, Kucinski I, Piddini E (2016) Cell competition drives the growth of intestinal adenomas in Drosophila. Curr Biol 26:428–438. https://doi.org/10.1016/j.cub.2015.12.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Menéndez J, Pérez-Garijo A, Calleja M, Morata G (2010) A tumor-suppressing mechanism in Drosophila involving cell competition and the Hippo pathway. Proc Natl Acad Sci U S A 107:14651–14656. https://doi.org/10.1073/pnas.1009376107

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yang C-CC, Graves HK, Moya IM et al (2015) Differential regulation of the Hippo pathway by adherens junctions and apical-basal cell polarity modules. Proc Natl Acad Sci U S A 112:1785–1790. https://doi.org/10.1073/pnas.1420850112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen C-LL, Schroeder MC, Kango-Singh M et al (2012) Tumor suppression by cell competition through regulation of the Hippo pathway. Proc Natl Acad Sci U S A 109:484–489. https://doi.org/10.1073/pnas.1113882109

    Article  PubMed  Google Scholar 

  32. Hafezi Y, Bosch JA, Hariharan IK (2012) Differences in levels of the transmembrane protein Crumbs can influence cell survival at clonal boundaries. Dev Biol 368:358–369. https://doi.org/10.1016/j.ydbio.2012.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tyler DM, Li W, Zhuo N et al (2007) Genes affecting cell competition in Drosophila. Genetics 175:643–657. https://doi.org/10.1534/genetics.106.061929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Robinson BS, Huang J, Hong Y, Moberg KH (2010) Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein Expanded. Curr Biol 20:582–590. https://doi.org/10.1016/j.cub.2010.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Simon MA, Xu A, Ishikawa HO, Irvine KD (2010) Modulation of fat:dachsous binding by the cadherin domain kinase four-jointed. Curr Biol 20:811–817. https://doi.org/10.1016/j.cub.2010.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roote J, Prokop A (2013) How to design a genetic mating scheme: a basic training package for Drosophila genetics. G3 (Bethesda) 3:353–358. https://doi.org/10.1534/g3.112.004820

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mardelle Atkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Atkins, M. (2019). Drosophila Genetics: The Power of Genetic Mosaic Approaches. In: Hergovich, A. (eds) The Hippo Pathway. Methods in Molecular Biology, vol 1893. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8910-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8910-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8909-6

  • Online ISBN: 978-1-4939-8910-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics