Skip to main content

Structural and Mechanical Characterization of Viruses with AFM

  • Protocol
  • First Online:
Atomic Force Microscopy

Abstract

Microscopes are used to characterize small objects with the help of probes that interact with the specimen, such as photons and electrons in optical and electron microscopies, respectively. In atomic force microscopy (AFM) the probe is a nanometric tip located at the end of a micro cantilever which palpates the specimen under study as a blind person manages a walking stick. In this way AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in liquid milieu. Beyond imaging, AFM also enables not only the manipulation of single protein cages, but also the characterization of every physicochemical property able of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. In this chapter we start revising some recipes for adsorbing protein shells on surfaces. Then we describe several AFM approaches to study individual protein cages, ranging from imaging to spectroscopic methodologies devoted for extracting physical information, such as mechanical and electrostatic properties. We also explain how a convenient combination of AFM and fluorescence methodologies entails monitoring genome release from individual viral shells during mechanical unpacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng S, Liu Y, Crowley CS, Yeates TO, Bobik TA (2008) Bacterial microcompartments: their properties and paradoxes. BioEssays 30(11–12):1084–1095. https://doi.org/10.1002/bies.20830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Querol-Audí J, Casañas A, Usón I, Luque D, Castón JR, Fita I, Verdaguer N (2009) The mechanism of vault opening from the high resolution structure of the N-terminal repeats of MVP. EMBO J 28(21):3450

    Article  CAS  Google Scholar 

  3. Wimmer E, Mueller S, Tumpey TM, Taubenberger JK (2009) Synthetic viruses: a new opportunity to understand and prevent viral disease. Nat Biotechnol 27(12):1163. https://doi.org/10.1038/nbt.1593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Wörsdörfer B, Woycechowsky KJ, Hilvert D (2011) Directed evolution of a protein container. Science 331(6017):589

    Article  CAS  Google Scholar 

  5. Lai Y-T, Reading E, Hura GL, Tsai K-L, Laganowsky A, Asturias FJ, Tainer JA, Robinson CV, Yeates TO (2014) Structure of a designed protein cage that self-assembles into a highly porous cube. Nat Chem 6(12):1065–1071. https://doi.org/10.1038/nchem.2107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Flint SJ, Enquist LW, Racaniello VR, Skalka AM (2004) Principles of virology. ASM Press, Washington, DC

    Google Scholar 

  7. Douglas T, Young M (1998) Host-guest encapsulation of materials by assembled virus protein cages. Nature 393(6681):152–155

    Article  CAS  Google Scholar 

  8. Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276(14):10577–10580. https://doi.org/10.1074/jbc.R100005200

    Article  PubMed  CAS  Google Scholar 

  9. Agirre J, Aloria K, Arizmendi JM, Iloro I, Elortza F, Sánchez-Eugenia R, Marti GA, Neumann E, Rey FA, Guérin DMA (2011) Capsid protein identification and analysis of mature Triatoma virus (TrV) virions and naturally occurring empty particles. Virology 409(1):91–101

    Article  CAS  Google Scholar 

  10. Cordova A, Deserno M, Gelbart WM, Ben-Shaul A (2003) Osmotic shock and the strength of viral capsids. Biophys J 85(1):70–74

    Article  CAS  Google Scholar 

  11. Baker TS, Olson NH, Fuller SD (1999) Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol Mol Biol Rev 63(4):862–922

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Hinterdorfer P, Van Oijen A (2009) Handbook of single-molecule biophysics. Springer, Dordrecht, New York

    Book  Google Scholar 

  13. Muller DJ, Amrein M, Engel A (1997) Adsorption of biological molecules to a solid support for scanning probe microscopy. J Struct Biol 119(2):172–188

    Article  CAS  Google Scholar 

  14. Armanious A, Aeppli M, Jacak R, Refardt D, Sigstam T, Kohn T, Sander M (2016) Viruses at solid-water interfaces: a systematic assessment of interactions driving adsorption. Environ Sci Technol 50(2):732–743. https://doi.org/10.1021/acs.est.5b04644

    Article  PubMed  CAS  Google Scholar 

  15. Llauró A, Guerra P, Irigoyen N, Rodríguez José F, Verdaguer N, de Pablo PJ (2014) Mechanical stability and reversible fracture of vault particles. Biophys J 106(3):687–695

    Article  CAS  Google Scholar 

  16. Llauro A, Luque D, Edwards E, Trus BL, Avera J, Reguera D, Douglas T, Pablo PJ, Caston JR (2016) Cargo-shell and cargo-cargo couplings govern the mechanics of artificially loaded virus-derived cages. Nanoscale 8(17):9328–9336. https://doi.org/10.1039/c6nr01007e

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ivanovska IL, Pablo PJC, Ibarra B, Sgalari G, MacKintosh FC, Carrascosa JL, Schmidt CF, Wuite GJL (2004) Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc Natl Acad Sci U S A 101(20):7600–7605

    Article  CAS  Google Scholar 

  18. Carpick RW, Ogletree DF, Salmeron M (1997) Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl Phys Lett 70(12):1548–1550

    Article  CAS  Google Scholar 

  19. Ohnesorge F, Binnig G (1993) True atomic-resolution by atomic force microscopy through repulsive and attractive forces. Science 260(5113):1451–1456

    Article  CAS  Google Scholar 

  20. Butt HJ, Prater CB, Hansma PK (1991) Imaging purple membranes dry and in water with the atomic force microscope. J Vac Sci Technol B 9(2):1193–1196. https://doi.org/10.1116/1.585245

    Article  Google Scholar 

  21. Moreno-Herrero F, Colchero J, Gomez-Herrero J, Baro AM (2004) Atomic force microscopy contact, tapping, and jumping modes for imaging biological samples in liquids. Phys Rev E Stat Nonlin Soft Matter Phys 69(3):031915

    Article  CAS  Google Scholar 

  22. Xiao C, Kuznetsov YG, Sun SY, Hafenstein SL, Kostyuchenko VA, Chipman PR, Suzan-Monti M, Raoult D, McPherson A, Rossmann MG (2009) Structural studies of the giant mimivirus. PLoS Biol 7(4):958–966. https://doi.org/10.1371/journal.pbio.1000092

    Article  CAS  Google Scholar 

  23. Vinckier A, Heyvaert I, Dhoore A, Mckittrick T, Vanhaesendonck C, Engelborghs Y, Hellemans L (1995) Immobilizing and imaging microtubules by atomic-force microscopy. Ultramicroscopy 57(4):337–343

    Article  CAS  Google Scholar 

  24. Carrasco C, Luque A, Hernando-Perez M, Miranda R, Carrascosa JL, Serena PA, de Ridder M, Raman A, Gomez-Herrero J, Schaap IAT, Reguera D, de Pablo PJ (2011) Built-in mechanical stress in viral shells. Biophys J 100(4):1100–1108. https://doi.org/10.1016/j.bpj.2011.01.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Roos WH, Bruinsma R, Wuite GJL (2010) Physical virology. Nat Phys 6(10):733–743. https://doi.org/10.1038/Nphys1797

    Article  CAS  Google Scholar 

  26. Miyatani T, Horii M, Rosa A, Fujihira M, Marti O (1997) Mapping of electrical double-layer force between tip and sample surfaces in water with pulsed-force-mode atomic force microscopy. Appl Phys Lett 71(18):2632–2634

    Article  CAS  Google Scholar 

  27. de Pablo PJ, Colchero J, Gomez-Herrero J, Baro AM (1998) Jumping mode scanning force microscopy. Appl Phys Lett 73(22):3300–3302

    Article  Google Scholar 

  28. Ortega-Esteban A, Horcas I, Hernando-Perez M, Ares P, Perez-Berna AJ, San Martin C, Carrascosa JL, de Pablo PJ, Gomez-Herrero J (2012) Minimizing tip-sample forces in jumping mode atomic force microscopy in liquid. Ultramicroscopy 114:56–61

    Article  CAS  Google Scholar 

  29. Legleiter J, Park M, Cusick B, Kowalewski T (2006) Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale. Proc Natl Acad Sci U S A 103(13):4813–4818

    Article  CAS  Google Scholar 

  30. Villarrubia JS (1997) Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J Res Natl Inst Stand Technol 102(4):425–454

    Article  CAS  Google Scholar 

  31. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    Article  PubMed  CAS  Google Scholar 

  32. Tao YZ, Olson NH, Xu W, Anderson DL, Rossmann MG, Baker TS (1998) Assembly of a tailed bacterial virus and its genome release studied in three dimensions. Cell 95(3):431–437

    Article  CAS  Google Scholar 

  33. Falvo MR, Washburn S, Superfine R, Finch M, Brooks FP, Chi V, Taylor RM (1997) Manipulation of individual viruses: friction and mechanical properties. Biophys J 72(3):1396–1403

    Article  CAS  Google Scholar 

  34. Carrasco C, Carreira A, Schaap IAT, Serena PA, Gomez-Herrero J, Mateu MG, Pablo PJ (2006) DNA-mediated anisotropic mechanical reinforcement of a virus. Proc Natl Acad Sci U S A 103(37):13706–13711

    Article  CAS  Google Scholar 

  35. Carrasco C, Castellanos M, de Pablo PJ, Mateu MG (2008) Manipulation of the mechanical properties of a virus by protein engineering. Proc Natl Acad Sci U S A 105(11):4150–4155. https://doi.org/10.1073/pnas.0708017105

    Article  PubMed  PubMed Central  Google Scholar 

  36. Roos WH, Radtke K, Kniesmeijer E, Geertsema H, Sodeik B, Wuite GJL (2009) Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Proc Natl Acad Sci U S A 106(24):9673–9678. https://doi.org/10.1073/pnas.0901514106

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hernando-Pérez M, Miranda R, Aznar M, Carrascosa JL, Schaap IAT, Reguera D, de Pablo PJ (2012) Direct measurement of phage phi29 stiffness provides evidence of internal pressure. Small 8(15):2365. https://doi.org/10.1002/smll.201200664

    Article  CAS  Google Scholar 

  38. Snijder J, Uetrecht C, Rose RJ, Sanchez-Eugenia R, Marti GA, Agirre J, Guerin DM, Wuite GJ, Heck AJ, Roos WH (2013) Probing the biophysical interplay between a viral genome and its capsid. Nat Chem 5(6):502–509. https://doi.org/10.1038/nchem.1627

    Article  PubMed  CAS  Google Scholar 

  39. Hernando-Perez M, Miranda R, Aznar M, Carrascosa JL, Schaap IAT, Reguera D, de Pablo PJ (2012) Direct measurement of phage phi29 stiffness provides evidence of internal pressure. Small 8(15):2366–2370. https://doi.org/10.1002/smll.201200664

    Article  PubMed  CAS  Google Scholar 

  40. Roos WH, Gertsman I, May ER, Brooks CL, Johnson JE, Wuite GJL (2012) Mechanics of bacteriophage maturation. Proc Natl Acad Sci U S A 109(7):2342–2347. https://doi.org/10.1073/pnas.1109590109

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ortega-Esteban A, Pérez-Berná AJ, Menéndez-Conejero R, Flint SJ, San Martín C, de Pablo PJ (2013) Monitoring dynamics of human adenovirus disassembly induced by mechanical fatigue. Sci Rep 3:1434

    Article  CAS  Google Scholar 

  42. Hernando-Perez M, Pascual E, Aznar M, Ionel A, Caston JR, Luque A, Carrascosa JL, Reguera D, de Pablo PJ (2014) The interplay between mechanics and stability of viral cages. Nanoscale 6(5):2702–2709. https://doi.org/10.1039/C3NR05763A

    Article  PubMed  CAS  Google Scholar 

  43. Llauro A, Schwarz B, Koliyatt R, de Pablo PJ, Douglas T (2016) Tuning viral capsid nanoparticle stability with symmetrical morphogenesis. ACS Nano 10:8465. https://doi.org/10.1021/acsnano.6b03441

    Article  PubMed  CAS  Google Scholar 

  44. Marchetti M, Wuite G, Roos WH (2016) Atomic force microscopy observation and characterization of single virions and virus-like particles by nano-indentation. Curr Opin Virol 18:82–88. https://doi.org/10.1016/j.coviro.2016.05.002

    Article  PubMed  CAS  Google Scholar 

  45. Snijder J, Kononova O, Barbu IM, Uetrecht C, Rurup WF, Burnley RJ, Koay MS, Cornelissen JJ, Roos WH, Barsegov V, Wuite GJ, Heck AJ (2016) Assembly and mechanical properties of the cargo-free and cargo-loaded bacterial nanocompartment encapsulin. Biomacromolecules 17(8):2522–2529. https://doi.org/10.1021/acs.biomac.6b00469

    Article  PubMed  CAS  Google Scholar 

  46. Zink M, Grubmuller H (2009) Mechanical properties of the icosahedral Shell of southern bean mosaic virus: a molecular dynamics study. Biophys J 96(4):1350–1363. https://doi.org/10.1016/j.bpj.2008.11.028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Landau LD, Lifshizt E (1986) Theory of elasticity, 3rd edn. Pergamon, London

    Google Scholar 

  48. Zlotnick A (2003) Are weak protein-protein interactions the general rule in capsid assembly? Virology 315(2):269–274. https://doi.org/10.1016/S0042-6822(03)00586-5

    Article  PubMed  CAS  Google Scholar 

  49. Llauro A, Coppari E, Imperatori F, Bizzarri AR, Caston JR, Santi L, Cannistraro S, de Pablo PJ (2015) Calcium ions modulate the mechanics of tomato bushy stunt virus. Biophys J 109(2):390–397. https://doi.org/10.1016/j.bpj.2015.05.039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ortega-Esteban A, Condezo GN, Perez-Berna AJ, Chillon M, Flint SJ, Reguera D, San Martin C, de Pablo PJ (2015) Mechanics of viral chromatin reveals the pressurization of human adenovirus. ACS Nano 9(11):10826–10833. https://doi.org/10.1021/acsnano.5b03417

    Article  PubMed  CAS  Google Scholar 

  51. Zhou HX, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397. https://doi.org/10.1146/annurev.biophys.37.032807.125817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hernando-Pérez M, Lambert S, Nakatani-Webster E, Catalano CE, de Pablo PJ (2014) Cementing proteins provide extra mechanical stabilization to viral cages. Nat Commun 5:4520. https://doi.org/10.1038/ncomms5520

    Article  PubMed  CAS  Google Scholar 

  53. Medina E, Nakatani E, Kruse S, Catalano CE (2012) Thermodynamic characterization of viral procapsid expansion into a functional capsid shell. J Mol Biol 418(3–4):167–180. https://doi.org/10.1016/j.jmb.2012.02.020

    Article  PubMed  CAS  Google Scholar 

  54. Gaiduk A, Kuhnemuth R, Antonik M, Seidel CA (2005) Optical characteristics of atomic force microscopy tips for single-molecule fluorescence applications. ChemPhysChem 6(5):976–983. https://doi.org/10.1002/cphc.200400485

    Article  PubMed  CAS  Google Scholar 

  55. Ortega-Esteban A, Bodensiek K, San Martin C, Suomalainen M, Greber UF, de Pablo PJ, Schaap IA (2015) Fluorescence tracking of genome release during mechanical unpacking of single viruses. ACS Nano 9(11):10571–10579. https://doi.org/10.1021/acsnano.5b03020

    Article  PubMed  CAS  Google Scholar 

  56. Uchida M, Klem M, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold L, Young M, Douglas T (2007) Biological containers: protein cages as multifunctional nanoplatforms. Adv Mater 19(8):1025–1042. https://doi.org/10.1002/(ISSN)1521-4095

    Article  CAS  Google Scholar 

  57. Butt HJ (1991) Electrostatic interaction in atomic force microscopy. Biophys J 60(4):777–785

    Article  CAS  Google Scholar 

  58. Sotres J, Baro AM (2010) AFM imaging and analysis of electrostatic double layer forces on single DNA molecules. Biophys J 98(9):1995–2004. https://doi.org/10.1016/j.bpj.2009.12.4330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Almonte L, Lopez-Elvira E, Baró AM (2014) Surface-charge differentiation of streptavidin and avidin by atomic force microscopy-force spectroscopy. ChemPhysChem 15(13):2768–2773. https://doi.org/10.1002/cphc.201402234

    Article  PubMed  CAS  Google Scholar 

  60. Zhang S, Aslan H, Besenbacher F, Dong MD (2014) Quantitative biomolecular imaging by dynamic nanomechanical mapping. Chem Soc Rev 43(21):7412–7429

    Article  CAS  Google Scholar 

  61. Cartagena A, Hernando-Perez M, Carrascosa JL, de Pablo PJ, Raman A (2013) Mapping in vitro local material properties of intact and disrupted virions at high resolution using multi-harmonic atomic force microscopy. Nanoscale 5(11):4729–4736. https://doi.org/10.1039/c3nr34088k

    Article  PubMed  CAS  Google Scholar 

  62. French RH, Parsegian VA, Podgornik R, Rajter RF, Jagota A, Luo J, Asthagiri D, Chaudhury MK, Chiang YM, Granick S, Kalinin S, Kardar M, Kjellander R, Langreth DC, Lewis J, Lustig S, Wesolowski D, Wettlaufer JS, Ching WY, Finnis M, Houlihan F, von Lilienfeld OA, van Oss CJ, Zemb T (2010) Long range interactions in nanoscale science. Rev Mod Phys 82(2):1887–1944

    Article  Google Scholar 

  63. Israelachvili J (2002) Intermolecular and surface forces. Academic Press, London

    Google Scholar 

  64. Hernando-Perez M, Cartagena-Rivera AX, Losdorfer Bozic A, Carrillo PJ, San Martin C, Mateu MG, Raman A, Podgornik R, de Pablo PJ (2015) Quantitative nanoscale electrostatics of viruses. Nanoscale 7(41):17289–17298. https://doi.org/10.1039/c5nr04274g

    Article  PubMed  CAS  Google Scholar 

  65. Carrillo-Tripp M, Shepherd CM, Borelli IA, Venkataraman S, Lander G, Natarajan P, Johnson JE, Brooks CL, Reddy VS (2009) VIPERdb(2): an enhanced and web API enabled relational database for structural virology. Nucleic Acids Res 37:D436–D442

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge our collaborators and projects FIS2017-89549-R, Fundación BBVA and “María de Maeztu” Program for Units of Excellence in R&D (MDM-2014-0377).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. de Pablo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ortega-Esteban, Á. et al. (2019). Structural and Mechanical Characterization of Viruses with AFM. In: Santos, N., Carvalho, F. (eds) Atomic Force Microscopy. Methods in Molecular Biology, vol 1886. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8894-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8894-5_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8893-8

  • Online ISBN: 978-1-4939-8894-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics