Skip to main content

Traditional Prenatal Diagnosis: Past to Present

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1885))

Abstract

In the nearly 60 years since prenatal diagnosis for genetic disease was first offered, the field of prenatal diagnosis has progressed far past rudimentary uterine puncture to provide fetal material to assess gender and interpret risk. Concurrent with the improvements in invasive fetal sampling came technological advances in cytogenetics and molecular biology that widened both the scope of genetic disorders that could be diagnosed and also the resolution at which the human genome could be interrogated. Nowadays, routine blood work available to all pregnant women can determine the risk for common chromosome abnormalities; chorionic villus sampling (CVS) and amniocentesis can be used to diagnose nearly all conditions with a known genetic cause; and the genome and/or exome of a fetus with multiple anomalies can be sequenced in an attempt to determine the underlying etiology. This chapter will discuss some of the major advances in prenatal sampling and prenatal diagnostic laboratory techniques that have occurred over the past six decades.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tjio JH, Levan A (1956) The chromosome number of man. Hereditas 42:1–6

    Article  Google Scholar 

  2. Prochownick L (1897) Beitrage zur Lehre vom Fruchtwasser und seiner Entstehung. Arch Gynakol 11:304

    Article  Google Scholar 

  3. Serr DM, Sachs L, Danon M (1955) The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report). Bull Res Counc Isr 5B(2):137–138

    CAS  PubMed  Google Scholar 

  4. Glenister TW (1956) Determination of sex in early human embryos. Nature 177(4520):1135–1136

    Article  CAS  PubMed  Google Scholar 

  5. Lejeune J, Gautier M, Turpin R (1959) Study of somatic chromosomes from 9 mongoloid children. C R Hebd Seances Acad Sci 248(11):1721–1722

    CAS  PubMed  Google Scholar 

  6. Ford CE, Jones KW, Polani PE et al (1959) A sex-chromosome anomaly in a case of gonadal dysgenesis (turner’s syndrome). Lancet 1(7075):711–713

    Article  CAS  PubMed  Google Scholar 

  7. Jacobs PA, Strong JA (1959) A case of human intersexuality having a possible XXY sex-determining mechanism. Nature 183(4657):302–303

    Article  CAS  PubMed  Google Scholar 

  8. Jacobs PA, Baikie AG, Brown WM et al (1959) Evidence for the existence of the human “super female”. Lancet 2(7100):423–425

    Article  CAS  PubMed  Google Scholar 

  9. Sandberg AA, Koepf GF, Ishihara T et al (1961) An XYY human male. Lancet 2(7200):488–489

    Article  CAS  PubMed  Google Scholar 

  10. Riis P, Fuchs F (1960) Antenatal determination of fœtal sex: in prevention of hereditary diseases. Lancet 276(7143):180–182. https://doi.org/10.1016/S0140-6736(60)91326-X

    Article  Google Scholar 

  11. Fuchs F, Riis P (1960) Fetal sex determination before decision on eugenic indications for abortion. Nord Med 64:1481–1483

    CAS  PubMed  Google Scholar 

  12. Steele MW, Breg WR Jr (1966) Chromosome analysis of human amniotic-fluid cells. Lancet 1(7434):383–385

    Article  CAS  PubMed  Google Scholar 

  13. Jacobson CB, Barter RH (1967) Intrauterine diagnosis and management of genetic defects. Am J Obstet Gynecol 99(6):796–807

    Article  CAS  PubMed  Google Scholar 

  14. Donald I, Brown TG (1961) Demonstration of tissue interfaces within the body by ultrasonic echo sounding. Br J Radiol 34:539–546. https://doi.org/10.1259/0007-1285-34-405-539

    Article  CAS  PubMed  Google Scholar 

  15. Donald I (1962) Clinical application of ultrasonic techniques in obstetrical and gynaecological diagnosis. J Obstet Gynaecol Br Emp 69:1036

    Article  CAS  PubMed  Google Scholar 

  16. Gottesfeld KR, Thompson HE, Holmes JH et al (1966) Ultrasonic placentography—a new method for placental localization. Am J Obstet Gynecol 96(4):538–547

    Article  CAS  PubMed  Google Scholar 

  17. MacVicar J, Donald I (1963) Sonar in the diagnosis of early pregnancy and its complications. BJOG Int J Obstet Gynaecol 70(3):387–395. https://doi.org/10.1111/j.1471-0528.1963.tb04920.x

    Article  Google Scholar 

  18. Ewigman BG, Crane JP, Frigoletto FD et al (1993) Effect of prenatal ultrasound screening on perinatal outcome. RADIUS Study Group. N Engl J Med 329(12):821–827

    Article  CAS  PubMed  Google Scholar 

  19. Dane B, Dane C, Sivri D et al (2007) Ultrasound screening for fetal major abnormalities at 11-14 weeks. Acta Obstet Gynecol Scand 86(6):666–670. https://doi.org/10.1080/00016340701253405

    Article  PubMed  Google Scholar 

  20. Hofmann D, Mast H, Hollander HJ (1967) The importance of placenta localization by means of ultrasonics for amniocentesis. Geburtshilfe Frauenheilkd 27(12):1199–1209

    CAS  PubMed  Google Scholar 

  21. Bang J, Northeved A (1972) A new ultrasonic method for transabdominal amniocentesis. Am J Obstet Gynecol 114(5):599–601

    Article  CAS  PubMed  Google Scholar 

  22. Platt LD, Manning FA, Lemay M (1978) Real-time B-scan-directed amniocentesis. Am J Obstet Gynecol 130(6):700–703

    Article  CAS  PubMed  Google Scholar 

  23. Romero R, Jeanty P, Reece EA et al (1985) Sonographically monitored amniocentesis to decrease intraoperative complications. Obstet Gynecol 65(3):426–430

    CAS  PubMed  Google Scholar 

  24. Wald NJ, Cuckle H, Brock JH et al (1977) Maternal serum-alpha-fetoprotein measurement in antenatal screening for anencephaly and spina bifida in early pregnancy. Report of U.K. collaborative study on alpha-fetoprotein in relation to neural-tube defects. Lancet 1(8026):1323–1332

    CAS  PubMed  Google Scholar 

  25. Wald NJ, Hackshaw AK, Cuckle HS (2000) Maternal serum alphafetoprotein screening for open neural tube defects: revised statistical parameters. BJOG 107(2):296–298

    Article  CAS  PubMed  Google Scholar 

  26. Cuckle H, Thornton J (1995) Antenatal diagnosis and management of neural tube defects. In: Levene M, Lilford R, Bennett M, Punt J (eds) Fetal and neonatal neurology and neurosurgery. Churchill Livingstone, Edinburgh, pp 295–309

    Google Scholar 

  27. Benacerraf BR, Barss VA, Laboda LA (1985) A sonographic sign for the detection in the second trimester of the fetus with Down’s syndrome. Am J Obstet Gynecol 151(8):1078–1079

    Article  CAS  PubMed  Google Scholar 

  28. Benacerraf BR, Frigoletto FD Jr, Laboda LA (1985) Sonographic diagnosis of down syndrome in the second trimester. Am J Obstet Gynecol 153(1):49–52

    Article  CAS  PubMed  Google Scholar 

  29. Lockwood C, Benacerraf B, Krinsky A et al (1987) A sonographic screening method for down syndrome. Am J Obstet Gynecol 157(4 Pt 1):803–808

    Article  CAS  PubMed  Google Scholar 

  30. Nicolaides KH, Azar G, Byrne D et al (1992) Fetal nuchal translucency: ultrasound screening for chromosomal defects in first trimester of pregnancy. BMJ 304(6831):867–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Merkatz IR, Nitowsky HM, Macri JN et al (1984) An association between low maternal serum alpha-fetoprotein and fetal chromosomal abnormalities. Am J Obstet Gynecol 148(7):886–894

    Article  CAS  PubMed  Google Scholar 

  32. Cuckle HS, Wald NJ, Lindenbaum RH (1984) Maternal serum alpha-fetoprotein measurement: a screening test for down syndrome. Lancet 1(8383):926–929

    Article  CAS  PubMed  Google Scholar 

  33. Bogart MH, Pandian MR, Jones OW (1987) Abnormal maternal serum chorionic gonadotropin levels in pregnancies with fetal chromosome abnormalities. Prenat Diagn 7(9):623–630

    Article  CAS  PubMed  Google Scholar 

  34. Canick JA, Knight GJ, Palomaki GE et al (1988) Low second trimester maternal serum unconjugated oestriol in pregnancies with Down’s syndrome. Br J Obstet Gynaecol 95(4):330–333

    Article  CAS  PubMed  Google Scholar 

  35. Wald NJ, Cuckle HS, Densem JW et al (1988) Maternal serum unconjugated oestriol as an antenatal screening test for Down’s syndrome. Br J Obstet Gynaecol 95(4):334–341

    Article  CAS  PubMed  Google Scholar 

  36. Wald NJ, Cuckle HS, Densem JW et al (1988) Maternal serum screening for Down’s syndrome in early pregnancy. BMJ 297(6653):883–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Palomaki GE, Knight GJ, McCarthy JE et al (1997) Maternal serum screening for down syndrome in the United States: a 1995 survey. Am J Obstet Gynecol 176(5):1046–1051

    Article  CAS  PubMed  Google Scholar 

  38. Wald N, Stone R, Cuckle HS et al (1992) First trimester concentrations of pregnancy associated plasma protein A and placental protein 14 in Down’s syndrome. BMJ 305(6844):28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ozturk M, Milunsky A, Brambati B et al (1990) Abnormal maternal serum levels of human chorionic gonadotropin free subunits in trisomy 18. Am J Med Genet 36(4):480–483. https://doi.org/10.1002/ajmg.1320360422

    Article  CAS  PubMed  Google Scholar 

  40. Wald NJ, Hackshaw AK (1997) Combining ultrasound and biochemistry in first-trimester screening for Down’s syndrome. Prenat Diagn 17(9):821–829

    Article  CAS  PubMed  Google Scholar 

  41. Van Lith JM, Pratt JJ, Beekhuis JR et al (1992) Second-trimester maternal serum immunoreactive inhibin as a marker for fetal Down’s syndrome. Prenat Diagn 12(10):801–806

    Article  PubMed  Google Scholar 

  42. Wald NJ, Densem JW, George L et al (1996) Prenatal screening for Down’s syndrome using inhibin-A as a serum marker. Prenat Diagn 16(2):143–153. https://doi.org/10.1002/(sici)1097-0223(199602)16:2<143::aid-pd825>3.0.co;2-f

    Article  CAS  PubMed  Google Scholar 

  43. Wald NJ, Densem JW, George L et al (1997) Inhibin-A in Down’s syndrome pregnancies: revised estimate of standard deviation. Prenat Diagn 17(3):285–290

    Article  CAS  PubMed  Google Scholar 

  44. Wald NJ, Watt HC, Hackshaw AK (1999) Integrated screening for Down’s syndrome based on tests performed during the first and second trimesters. N Engl J Med 341(7):461–467. https://doi.org/10.1056/nejm199908123410701

    Article  CAS  PubMed  Google Scholar 

  45. Wright D, Bradbury I, Benn P et al (2004) Contingent screening for Down syndrome is an efficient alternative to non-disclosure sequential screening. Prenat Diagn 24(10):762–766. https://doi.org/10.1002/pd.974

    Article  PubMed  Google Scholar 

  46. Malone FD, Canick JA, Ball RH et al (2005) First-trimester or second-trimester screening, or both, for Down’s syndrome. N Engl J Med 353(19):2001–2011. https://doi.org/10.1056/NEJMoa043693

    Article  CAS  PubMed  Google Scholar 

  47. Herzenberg LA, Bianchi DW, Schroder J et al (1979) Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting. Proc Natl Acad Sci U S A 76(3):1453–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lo YM, Corbetta N, Chamberlain PF et al (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350(9076):485–487

    Article  CAS  PubMed  Google Scholar 

  49. Churina SK, Pritykina N, Zhukovskaia NE (1975) Certain characteristics of pathogenesis of ischemic heart disease in women under 50 (before menopause). Ter Arkh 47(12):43–48

    CAS  PubMed  Google Scholar 

  50. Bianchi DW, Parker RL, Wentworth J et al (2014) DNA sequencing versus standard prenatal aneuploidy screening. N Engl J Med 370(9):799–808. https://doi.org/10.1056/NEJMoa1311037

    Article  CAS  PubMed  Google Scholar 

  51. Committee on Practice Bulletins—Obstetrics, Committee on Genetics, and the Society for Maternal-Fetal Medicine (2016) Practice Bulletin No. 163: screening for fetal aneuploidy. Obstet Gynecol 127(5):e123–e137. https://doi.org/10.1097/aog.0000000000001406

    Article  Google Scholar 

  52. Gregg AR, Skotko BG, Benkendorf JL et al (2016) Noninvasive prenatal screening for fetal aneuploidy, 2016 update: a position statement of the American College of Medical Genetics and Genomics. Genet Med 18(10):1056–1065. https://doi.org/10.1038/gim.2016.97

    Article  CAS  PubMed  Google Scholar 

  53. Nadler HL (1968) Patterns of enzyme development utilizing cultivated human fetal cells derived from amniotic fluid. Biochem Genet 2(2):119–126

    Article  CAS  PubMed  Google Scholar 

  54. Nadler HL, Walsh MM (1980) Intrauterine detection of cystic fibrosis. Pediatrics 66(5):690–692

    CAS  PubMed  Google Scholar 

  55. Brock DJ, Sutcliffe RG (1972) Alpha-fetoprotein in the antenatal diagnosis of anencephaly and spina bifida. Lancet 2(7770):197–199

    Article  CAS  PubMed  Google Scholar 

  56. Nadler HL, Gerbie AB (1970) Role of amniocentesis in the intrauterine detection of genetic disorders. N Engl J Med 282(11):596–599

    Article  CAS  PubMed  Google Scholar 

  57. NICHD (1976) Midtrimester amniocentesis for prenatal diagnosis. Safety and accuracy. JAMA 236(13):1471–1476

    Article  Google Scholar 

  58. Farrell SA, Summers AM, Dallaire L et al (1999) Club foot, an adverse outcome of early amniocentesis: disruption or deformation? CEMAT. Canadian early and mid-trimester amniocentesis trial. J Med Genet 36(11):843–846

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Benacerraf BR, Greene MF, Saltzman DH et al (1988) Early amniocentesis for prenatal cytogenetic evaluation. Radiology 169(3):709–710. https://doi.org/10.1148/radiology.169.3.3055033

    Article  CAS  PubMed  Google Scholar 

  60. Hanson FW, Zorn EM, Tennant FR et al (1987) Amniocentesis before 15 weeks’ gestation: outcome, risks, and technical problems. Am J Obstet Gynecol 156(6):1524–1531

    Article  CAS  PubMed  Google Scholar 

  61. Hanson FW, Happ RL, Tennant FR et al (1990) Ultrasonography-guided early amniocentesis in singleton pregnancies. Am J Obstet Gynecol 162(6):1376–1381 discussion 1381-1373

    Article  CAS  PubMed  Google Scholar 

  62. ACOG Committee on Practice Bulletins (2007) ACOG Practice Bulletin No. 77: screening for fetal chromosomal abnormalities. Obstet Gynecol 109(1):217–227

    Article  Google Scholar 

  63. American College of Obstetricians and Gynecologists (2007) ACOG Practice Bulletin No. 88, December 2007. Invasive prenatal testing for aneuploidy. Obstet Gynecol 110(6):1459–1467. https://doi.org/10.1097/01.AOG.0000291570.63450.44

    Article  Google Scholar 

  64. Westin B (1954) Hysteroscopy in early pregnancy. Lancet 264(6843):872. https://doi.org/10.1016/S0140-6736(54)91969-8

    Article  Google Scholar 

  65. Valenti C (1973) Antenatal detection of hemoglobinopathies. A preliminary report. Am J Obstet Gynecol 115(6):851–853

    Article  CAS  PubMed  Google Scholar 

  66. Scrimgeour J (1973) Other techniques for antenatal diagnosis. In: Emery A (ed) Antenatal diagnosis of genetic disease. Churchill Livingstone, New York, p 49

    Google Scholar 

  67. Hobbins JC, Mahoney MJ (1974) In utero diagnosis of hemoglobinopathies. Technic for obtaining fetal blood. N Engl J Med 290(19):1065–1067. https://doi.org/10.1056/nejm197405092901908

    Article  CAS  PubMed  Google Scholar 

  68. Kan YW, Golbus MS, Trecartin R (1975) Prenatal diagnosis of homozygous beta-thalassaemia. Lancet 2(7939):790–791

    Article  CAS  PubMed  Google Scholar 

  69. Firshein SI, Hoyer LW, Lazarchick J et al (1979) Prenatal diagnosis of classic hemophilia. N Engl J Med 300(17):937–941. https://doi.org/10.1056/nejm197904263001701

    Article  CAS  PubMed  Google Scholar 

  70. Mahoney MJ, Hobbins JC (1977) Prenatal diagnosis of chondroectodermal dysplasia (Ellis-van Creveld syndrome) with fetoscopy and ultrasound. N Engl J Med 297(5):258–260. https://doi.org/10.1056/nejm197708042970507

    Article  CAS  PubMed  Google Scholar 

  71. Golbus MS, Sagebiel RW, Filly RA et al (1980) Prenatal diagnosis of congenital bullous ichthyosiform erythroderma (epidermolytic hyperkeratosis) by fetal skin biopsy. N Engl J Med 302(2):93–95. https://doi.org/10.1056/nejm198001103020205

    Article  CAS  PubMed  Google Scholar 

  72. Rodeck CH, Eady RA, Gosden CM (1980) Prenatal diagnosis of epidermolysis bullosa letalis. Lancet 1(8175):949–952

    Article  CAS  PubMed  Google Scholar 

  73. Fensom AH, Benson PF, Rodeck CH et al (1979) Prenatal diagnosis of a galactosaemia heterozygote by fetal blood enzyme assay. Br Med J 1(6155):21–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Perry TB, Hechtman P, Chow JC (1979) Diagnosis of Tay-Sachs disease on blood obtained at fetoscopy. Lancet 1(8123):972–973

    Article  CAS  PubMed  Google Scholar 

  75. Mahoney M, Hobbins J (1979) Fetoscopy and fetal blood sampling. In: Milunsky A (ed) Genetic disorders and the fetus. Springer, Boston, MA

    Google Scholar 

  76. Mohr J (1968) Foetal genetic diagnosis: development of techniques for early sampling of foetal cells. Acta Pathol Microbiol Scand 73(1):73–77

    Article  CAS  PubMed  Google Scholar 

  77. Kullander S, Sandahl B (1973) Fetal chromosome analysis after transcervical placental biopsies during early pregnancy. Acta Obstet Gynecol Scand 52(4):355–359

    Article  CAS  PubMed  Google Scholar 

  78. Hahnemann N (1974) Early prenatal diagnosis; a study of biopsy techniques and cell culturing from extraembryonic membranes. Clin Genet 6(4):294–306

    Article  CAS  PubMed  Google Scholar 

  79. (1975) Fetal sex pridiction by sex chromatin of chorionic villi cells during early pregnancy. Chin Med J (Engl) 1(2):117–126

    Google Scholar 

  80. Ward RH, Modell B, Petrou M et al (1983) Method of sampling chorionic villi in first trimester of pregnancy under guidance of real time ultrasound. Br Med J (Clin Res Ed) 286(6377):1542–1544

    Article  CAS  Google Scholar 

  81. Williamson R, Eskdale J, Coleman DV et al (1981) Direct gene analysis of chorionic villi: a possible technique for first-trimester antenatal diagnosis of haemoglobinopathies. Lancet 2(8256):1125–1127

    Article  CAS  PubMed  Google Scholar 

  82. Old JM, Ward RH, Petrou M et al (1982) First-trimester fetal diagnosis for haemoglobinopathies: three cases. Lancet 2(8313):1413–1416

    Article  CAS  PubMed  Google Scholar 

  83. Goossens M, Dumez Y, Kaplan L et al (1983) Prenatal diagnosis of sickle-cell anemia in the first trimester of pregnancy. N Engl J Med 309(14):831–833. https://doi.org/10.1056/nejm198310063091405

    Article  CAS  PubMed  Google Scholar 

  84. Gustavii B (1983) First-trimester chromosomal analysis of chorionic villi obtained by direct vision technique. Lancet 2(8348):507–508

    Article  CAS  PubMed  Google Scholar 

  85. Kazy ZRI, Bakhaev V (1982) Chorion biopsy in early pregnancy: a method of early prenatal diagnosis for inherited disorders. Prenat Diagn 2:39

    Article  Google Scholar 

  86. Pergament E, Ginsberg N, Verlinsky Y et al (1983) Prenatal Tay-Sachs diagnosis by chorionic villi sampling. Lancet 322(8344):286–287. https://doi.org/10.1016/S0140-6736(83)90270-2

    Article  Google Scholar 

  87. Brambati B, Simoni G (1983) Diagnosis of fetal trisomy 21 in first trimester. Lancet 1(8324):586

    CAS  PubMed  Google Scholar 

  88. Simoni G, Brambati B, Danesino C et al (1983) Efficient direct chromosome analyses and enzyme determinations from chorionic villi samples in the first trimester of pregnancy. Hum Genet 63(4):349–357

    Article  CAS  PubMed  Google Scholar 

  89. Aladjem S (1968) Phase contrast microscopic observations of the human placenta from six weeks to term. An anatomic and clinical correlation. Obstet Gynecol 32(1):28–39

    CAS  PubMed  Google Scholar 

  90. Alvarez H (1964) Morphology and physiopathology of the human placenta. i. studies of morphology and development of chorionic villi by phase-contrast microscopy. Obstet Gynecol 23:813–825

    CAS  PubMed  Google Scholar 

  91. Smidt-Jensen S, Hahnemann N (1984) Transabdominal fine needle biopsy from chorionic villi in the first trimester. Prenat Diagn 4(3):163–169

    Article  CAS  PubMed  Google Scholar 

  92. Rhoads GG, Jackson LG, Schlesselman SE et al (1989) The safety and efficacy of chorionic villus sampling for early prenatal diagnosis of cytogenetic abnormalities. N Engl J Med 320(10):609–617

    Article  CAS  PubMed  Google Scholar 

  93. Olney RS et al (1995) Chorionic villus sampling and amniocentesis: recommendations for prenatal counseling. Centers for disease control and prevention. MMWR Recomm Rep 44(RR-9):1–12

    Google Scholar 

  94. Risk evaluation of chorionic villus sampling (CVS): report on a meeting (1992) World Health Organization Regional Office for Europe (WHO/EURO), Copenhagen

    Google Scholar 

  95. Morris ED, Beard RW (1965) The rationale and technique of foetal blood sampling and amnioscopy. J Obstet Gynaecol Br Commonw 72:489–495

    Article  CAS  PubMed  Google Scholar 

  96. Patrick JE, Perry TB, Kinch RA (1974) Fetoscopy and fetal blood sampling: a percutaneous approach. Am J Obstet Gynecol 119(4):539–542

    Article  CAS  PubMed  Google Scholar 

  97. Daffos F, Capella-Pavlovsky M, Forestier F (1983) Fetal blood sampling via the umbilical cord using a needle guided by ultrasound. Report of 66 cases. Prenat Diagn 3(4):271–277

    Article  CAS  PubMed  Google Scholar 

  98. Nicolaides KH, Soothill PW, Rodeck CH et al (1986) Rh disease: intravascular fetal blood transfusion by cordocentesis. Fetal Ther 1(4):185–192

    Article  CAS  PubMed  Google Scholar 

  99. Nicolaides KH (1988) Cordocentesis. Clin Obstet Gynecol 31(1):123–135

    Article  CAS  PubMed  Google Scholar 

  100. Pardi G, Buscaglia M, Ferrazzi E et al (1987) Cord sampling for the evaluation of oxygenation and acid-base balance in growth-retarded human fetuses. Am J Obstet Gynecol 157(5):1221–1228

    Article  CAS  PubMed  Google Scholar 

  101. Hickok DE, Mills M (1992) Percutaneous umbilical blood sampling: results from a multicenter collaborative registry. The Western Collaborative Perinatal Group. Am J Obstet Gynecol 166(6 Pt 1):1614–1617 discussion 1617-1618

    Article  CAS  PubMed  Google Scholar 

  102. Duchatel F, Oury JF, Mennesson B et al (1993) Complications of diagnostic ultrasound-guided percutaneous umbilical blood sampling: analysis of a series of 341 cases and review of the literature. Eur J Obstet Gynecol Reprod Biol 52(2):95–104

    Article  CAS  PubMed  Google Scholar 

  103. Liao C, Wei J, Li Q et al (2006) Efficacy and safety of cordocentesis for prenatal diagnosis. Int J Gynaecol Obstet 93(1):13–17. https://doi.org/10.1016/j.ijgo.2006.01.005

    Article  PubMed  Google Scholar 

  104. Patau K (1960) The identification of individual chromosomes, especially in man. Am J Hum Genet 12:250–276

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Caspersson T, Zech L, Johansson C (1970) Differential binding of alkylating fluorochromes in human chromosomes. Exp Cell Res 60(3):315–319

    Article  CAS  PubMed  Google Scholar 

  106. Drets ME, Shaw MW (1971) Specific banding patterns of human chromosomes. Proc Natl Acad Sci U S A 68(9):2073–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hirschhorn K, Lucas M, Wallace I (1973) Precise identification of various chromosomal abnormalities. Ann Hum Genet 36(4):375–379

    Article  CAS  PubMed  Google Scholar 

  108. Patil SR, Merrick S, Lubs HA (1971) Identification of each human chromosome with a modified Giemsa stain. Science 173(999):821–822

    Article  CAS  PubMed  Google Scholar 

  109. Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2(7731):971–972

    Article  CAS  PubMed  Google Scholar 

  110. Galjaard H (1976) European experience with prenatal diagnosis of congenital disease: a survey of 6121 cases. Cytogenet Cell Genet 16(6):453–467. https://doi.org/10.1159/000130663

    Article  CAS  PubMed  Google Scholar 

  111. Niermeijer MF, Sachs ES, Jahodova M et al (1976) Prenatal diagnosis of genetic disorders. J Med Genet 13(3):182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kan YW, Dozy AM (1978) Antenatal diagnosis of sickle-cell anaemia by D.N.A. analysis of amniotic-fluid cells. Lancet 2(8096):910–912

    Article  CAS  PubMed  Google Scholar 

  113. Dozy AM, Forman EN, Abuelo DN et al (1979) Prenatal diagnosis of homozygous alpha-thalassemia. JAMA 241(15):1610–1612

    Article  CAS  PubMed  Google Scholar 

  114. Kan YW, Lee KY, Furbetta M et al (1980) Polymorphism of DNA sequence in the beta-globin gene region. Application to prenatal diagnosis of beta 0 thalassemia in Sardinia. N Engl J Med 302(4):185–188. https://doi.org/10.1056/NEJM198001243020401

    Article  CAS  PubMed  Google Scholar 

  115. Orkin SH, Alter BP, Altay C et al (1978) Application of endonuclease mapping to the analysis and prenatal diagnosis of thalassemias caused by globin-gene deletion. N Engl J Med 299(4):166–172. https://doi.org/10.1056/NEJM197807272990403

    Article  CAS  PubMed  Google Scholar 

  116. Mullis KB (2009) Polymerase chain reaction. https://www.karymullis.com/pcr.shtml. Accessed 22 Apr 2018

  117. Mullis K, Faloona F, Scharf S et al (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51(Pt 1):263–273

    Article  CAS  PubMed  Google Scholar 

  118. Saiki RK, Scharf S, Faloona F et al (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230(4732):1350–1354

    Article  CAS  PubMed  Google Scholar 

  119. Kogan SC, Doherty M, Gitschier J (1987) An improved method for prenatal diagnosis of genetic diseases by analysis of amplified DNA sequences. Application to hemophilia A. N Engl J Med 317(16):985–990. https://doi.org/10.1056/NEJM198710153171603

    Article  CAS  PubMed  Google Scholar 

  120. Gasparini P, Novelli G, Savoia A et al (1989) First-trimester prenatal diagnosis of cystic fibrosis using the polymerase chain reaction: report of eight cases. Prenat Diagn 9(5):349–355

    Article  CAS  PubMed  Google Scholar 

  121. Grover CM, Thulliez P, Remington JS et al (1990) Rapid prenatal diagnosis of congenital Toxoplasma infection by using polymerase chain reaction and amniotic fluid. J Clin Microbiol 28(10):2297–2301

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ho-Terry L, Terry GM, Londesborough P (1990) Diagnosis of foetal rubella virus infection by polymerase chain reaction. J Gen Virol 71(Pt 7):1607–1611. https://doi.org/10.1099/0022-1317-71-7-1607

    Article  PubMed  Google Scholar 

  123. Mansfield ES (1993) Diagnosis of Down syndrome and other aneuploidies using quantitative polymerase chain reaction and small tandem repeat polymorphisms. Hum Mol Genet 2(1):43–50

    Article  CAS  PubMed  Google Scholar 

  124. Pertl B, Yau SC, Sherlock J et al (1994) Rapid molecular method for prenatal detection of Down’s syndrome. Lancet 343(8907):1197–1198

    Article  CAS  PubMed  Google Scholar 

  125. Schouten JP, McElgunn CJ, Waaijer R et al (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30(12):e57

    Article  PubMed  PubMed Central  Google Scholar 

  126. Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci U S A 63(2):378–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. John HA, Birnstiel ML, Jones KW (1969) RNA-DNA hybrids at the cytological level. Nature 223(206):582–587

    Article  CAS  PubMed  Google Scholar 

  128. Buongiorno-Nardelli M, Amaldi F (1970) Autoradiographic detection of molecular hybrids between RNA and DNA in tissue sections. Nature 225(236):946–948

    Article  CAS  PubMed  Google Scholar 

  129. Manning JE, Hershey ND, Broker TR et al (1975) A new method of in situ hybridization. Chromosoma 53(2):107–117

    Article  CAS  PubMed  Google Scholar 

  130. Cheung SW, Tishler PV, Atkins L et al (1977) Gene mapping by fluorescent in situ hybridization. Cell Biol Int Rep 1(3):255–262

    Article  CAS  PubMed  Google Scholar 

  131. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A 83(9):2934–2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Landegren U, Kaiser R, Caskey CT et al (1988) DNA diagnostics-molecular techniques and automation. Science 242(4876):229–237

    Article  CAS  PubMed  Google Scholar 

  133. Kuo WL, Tenjin H, Segraves R et al (1991) Detection of aneuploidy involving chromosomes 13, 18, or 21, by fluorescence in situ hybridization (FISH) to interphase and metaphase amniocytes. Am J Hum Genet 49(1):112–119

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Carter NP, Ferguson-Smith MA, Perryman MT et al (1992) Reverse chromosome painting: a method for the rapid analysis of aberrant chromosomes in clinical cytogenetics. J Med Genet 29(5):299–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Klever M, Grond-Ginsbach CJ, Hager HD et al (1992) Chorionic villus metaphase chromosomes and interphase nuclei analysed by chromosomal in situ suppression (CISS) hybridization. Prenat Diagn 12(1):53–59

    Article  CAS  PubMed  Google Scholar 

  136. Ried T, Baldini A, Rand TC et al (1992) Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc Natl Acad Sci U S A 89(4):1388–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zahed L, Murer-Orlando M, Vekemans M (1992) In situ hybridization studies for the detection of common aneuploidies in CVS. Prenat Diagn 12(6):483–493

    Article  CAS  PubMed  Google Scholar 

  138. Kuwano A, Ledbetter SA, Dobyns WB et al (1991) Detection of deletions and cryptic translocations in Miller-Dieker syndrome by in situ hybridization. Am J Hum Genet 49(4):707–714

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Leana-Cox J, Levin S, Surana R et al (1993) Characterization of de novo duplications in eight patients by using fluorescence in situ hybridization with chromosome-specific DNA libraries. Am J Hum Genet 52(6):1067–1073

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Franke UC, Scambler PJ, Loffler C et al (1994) Interstitial deletion of 22q11 in DiGeorge syndrome detected by high resolution and molecular analysis. Clin Genet 46(2):187–192

    Article  CAS  PubMed  Google Scholar 

  141. Adinolfi M, Davies A (1994) Clinical application of non-isotopic in situ hybridization methods. CRC Press, Boca Raton, FL

    Google Scholar 

  142. Blennow E, Bui TH, Kristoffersson U et al (1994) Swedish survey on extra structurally abnormal chromosomes in 39 105 consecutive prenatal diagnoses: prevalence and characterization by fluorescence in situ hybridization. Prenat Diagn 14(11):1019–1028

    Article  CAS  PubMed  Google Scholar 

  143. Blennow E, Nielsen KB, Telenius H et al (1995) Fifty probands with extra structurally abnormal chromosomes characterized by fluorescence in situ hybridization. Am J Med Genet 55(1):85–94

    Article  CAS  PubMed  Google Scholar 

  144. Klinger K, Landes G, Shook D et al (1992) Rapid detection of chromosome aneuploidies in uncultured amniocytes by using fluorescence in situ hybridization (FISH). Am J Hum Genet 51(1):55–65

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Rao PN, Hayworth R, Cox K et al (1993) Rapid detection of aneuploidy in uncultured chorionic villus cells using fluorescence in situ hybridization. Prenat Diagn 13(4):233–238

    Article  CAS  PubMed  Google Scholar 

  146. Tepperberg J, Pettenati MJ, Rao PN et al (2001) Prenatal diagnosis using interphase fluorescence in situ hybridization (FISH): 2-year multi-center retrospective study and review of the literature. Prenat Diagn 21(4):293–301

    Article  CAS  PubMed  Google Scholar 

  147. Kallioniemi A, Kallioniemi OP, Sudar D et al (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258(5083):818–821

    Article  CAS  PubMed  Google Scholar 

  148. Forus A, Weghuis DO, Smeets D et al (1995) Comparative genomic hybridization analysis of human sarcomas: II. Identification of novel amplicons at 6p and 17p in osteosarcomas. Genes Chromosomes Cancer 14(1):15–21

    Article  CAS  PubMed  Google Scholar 

  149. Forus A, Weghuis DO, Smeets D et al (1995) Comparative genomic hybridization analysis of human sarcomas: I. Occurrence of genomic imbalances and identification of a novel major amplicon at 1q21-q22 in soft tissue sarcomas. Genes Chromosomes Cancer 14(1):8–14

    Article  CAS  PubMed  Google Scholar 

  150. Isola J, Kallioniemi OP, Chu LW et al (1995) Genetic aberrations detected by comparative genomic hybridization predict outcome in node-negative breast cancer. Am J Pathol 147(4):905–911

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Joos S, Bergerheim US, Pan Y et al (1995) Mapping of chromosomal gains and losses in prostate cancer by comparative genomic hybridization. Genes Chromosomes Cancer 14(4):267–276

    Article  CAS  PubMed  Google Scholar 

  152. Kallioniemi A, Kallioniemi OP, Citro G et al (1995) Identification of gains and losses of DNA sequences in primary bladder cancer by comparative genomic hybridization. Genes Chromosomes Cancer 12(3):213–219

    Article  CAS  PubMed  Google Scholar 

  153. du Manoir S, Speicher MR, Joos S et al (1993) Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet 90(6):590–610

    Article  PubMed  Google Scholar 

  154. Bryndorf T, Kirchhoff M, Rose H et al (1995) Comparative genomic hybridization in clinical cytogenetics. Am J Hum Genet 57(5):1211–1220

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Lapierre JM, Cacheux V, Collot N et al (1998) Comparison of comparative genomic hybridization with conventional karyotype and classical fluorescence in situ hybridization for prenatal and postnatal diagnosis of unbalanced chromosome abnormalities. Ann Genet 41(3):133–140

    CAS  PubMed  Google Scholar 

  156. Levy B, Dunn TM, Kaffe S et al (1998) Clinical applications of comparative genomic hybridization. Genet Med 1(1):4–12

    Article  CAS  PubMed  Google Scholar 

  157. Kallioniemi OP, Kallioniemi A, Sudar D et al (1993) Comparative genomic hybridization: a rapid new method for detecting and mapping DNA amplification in tumors. Semin Cancer Biol 4(1):41–46

    CAS  PubMed  Google Scholar 

  158. Kallioniemi OP, Kallioniemi A, Piper J et al (1994) Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes Chromosomes Cancer 10(4):231–243

    Article  CAS  PubMed  Google Scholar 

  159. Boceno M, Rival JM, Nomballais MF et al (1998) Characterization of two add(4qter) chromosomes by comparative genomic hybridization. Ann Genet 41(2):83–86

    CAS  PubMed  Google Scholar 

  160. Lapierre JM, Cacheux V, Luton D et al (2000) Analysis of uncultured amniocytes by comparative genomic hybridization: a prospective prenatal study. Prenat Diagn 20(2):123–131

    Article  CAS  PubMed  Google Scholar 

  161. Levy B, Papenhausen PR, Tepperberg JH et al (2000) Prenatal molecular cytogenetic diagnosis of partial tetrasomy 10p due to neocentromere formation in an inversion duplication analphoid marker chromosome. Cytogenet Cell Genet 91(1–4):165–170

    Article  CAS  PubMed  Google Scholar 

  162. Wang BB, Yu LC, Peng W et al (1995) Prenatal identification of i(Yp) by molecular cytogenetic analysis. Prenat Diagn 15(12):1115–1119

    Article  CAS  PubMed  Google Scholar 

  163. Kirchhoff M, Rose H, Lundsteen C (2001) High resolution comparative genomic hybridisation in clinical cytogenetics. J Med Genet 38(11):740–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Solinas-Toldo S, Lampel S, Stilgenbauer S et al (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20(4):399–407

    Article  CAS  PubMed  Google Scholar 

  165. Pinkel D, Segraves R, Sudar D et al (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20(2):207–211

    Article  CAS  PubMed  Google Scholar 

  166. Yu W, Ballif BC, Kashork CD et al (2003) Development of a comparative genomic hybridization microarray and demonstration of its utility with 25 well-characterized 1p36 deletions. Hum Mol Genet 12(17):2145–2152. https://doi.org/10.1093/hmg/ddg230

    Article  CAS  PubMed  Google Scholar 

  167. Vissers LE, de Vries BB, Osoegawa K et al (2003) Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am J Hum Genet 73(6):1261–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tachdjian G, Aboura A, Benkhalifa M et al (2004) De novo interstitial direct duplication of Xq21.1q25 associated with skewed X-inactivation pattern. Am J Med Genet A 131(3):273–280. https://doi.org/10.1002/ajmg.a.30359

    Article  CAS  PubMed  Google Scholar 

  169. Bejjani BA, Saleki R, Ballif BC et al (2005) Use of targeted array-based CGH for the clinical diagnosis of chromosomal imbalance: is less more? Am J Med Genet A 134(3):259–267. https://doi.org/10.1002/ajmg.a.30621

    Article  PubMed  Google Scholar 

  170. Cheung SW, Shaw CA, Yu W et al (2005) Development and validation of a CGH microarray for clinical cytogenetic diagnosis. Genet Med 7(6):422–432 https://doi.org/10.109701.GIM.0000170992.63691.32

    Article  PubMed  Google Scholar 

  171. Le Caignec C, Boceno M, Saugier-Veber P et al (2005) Detection of genomic imbalances by array based comparative genomic hybridisation in fetuses with multiple malformations. J Med Genet 42(2):121–128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Schoumans J, Ruivenkamp C, Holmberg E et al (2005) Detection of chromosomal imbalances in children with idiopathic mental retardation by array based comparative genomic hybridisation (array-CGH). J Med Genet 42(9):699–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wapner RJ, Martin CL, Levy B et al (2012) Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med 367(23):2175–2184. https://doi.org/10.1056/NEJMoa1203382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Friedman JM, Baross A, Delaney AD et al (2006) Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation. Am J Hum Genet 79(3):500–513. https://doi.org/10.1086/507471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Toruner GA, Streck DL, Schwalb MN et al (2007) An oligonucleotide based array-CGH system for detection of genome wide copy number changes including subtelomeric regions for genetic evaluation of mental retardation. Am J Med Genet A 143A(8):824–829. https://doi.org/10.1002/ajmg.a.31656

    Article  PubMed  Google Scholar 

  176. Huang J, Wei W, Zhang J et al (2004) Whole genome DNA copy number changes identified by high density oligonucleotide arrays. Hum Genomics 1(4):287–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Mei R, Galipeau PC, Prass C et al (2000) Genome-wide detection of allelic imbalance using human SNPs and high-density DNA arrays. Genome Res 10(8):1126–1137

    Article  CAS  PubMed  Google Scholar 

  178. Faas BH, van der Burgt I, Kooper AJ et al (2010) Identification of clinically significant, submicroscopic chromosome alterations and UPD in fetuses with ultrasound anomalies using genome-wide 250k SNP array analysis. J Med Genet 47(9):586–594. https://doi.org/10.1136/jmg.2009.075853

    Article  CAS  PubMed  Google Scholar 

  179. Srebniak M, Boter M, Oudesluijs G et al (2011) Application of SNP array for rapid prenatal diagnosis: implementation, genetic counselling and diagnostic flow. Eur J Hum Genet 19(12):1230–1237. https://doi.org/10.1038/ejhg.2011.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Tyreman M, Abbott KM, Willatt LR et al (2009) High resolution array analysis: diagnosing pregnancies with abnormal ultrasound findings. J Med Genet 46(8):531–541. https://doi.org/10.1136/jmg.2008.065482

    Article  CAS  PubMed  Google Scholar 

  181. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Swerdlow H, Gesteland R (1990) Capillary gel electrophoresis for rapid, high resolution DNA sequencing. Nucleic Acids Res 18(6):1415–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Behjati S, Tarpey PS (2013) What is next generation sequencing? Arch Dis Child Educ Pract Ed 98(6):236–238. https://doi.org/10.1136/archdischild-2013-304340

    Article  PubMed  PubMed Central  Google Scholar 

  184. Ng SB, Buckingham KJ, Lee C et al (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42(1):30–35. https://doi.org/10.1038/ng.499

    Article  CAS  PubMed  Google Scholar 

  185. Ng SB, Bigham AW, Buckingham KJ et al (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 42(9):790–793. https://doi.org/10.1038/ng.646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kaiser J (2010) Human genetics. Affordable ‘exomes’ fill gaps in a catalog of rare diseases. Science 330(6006):903. https://doi.org/10.1126/science.330.6006.903

    Article  CAS  PubMed  Google Scholar 

  187. Rabbani B, Tekin M, Mahdieh N (2014) The promise of whole-exome sequencing in medical genetics. J Hum Genet 59(1):5–15. https://doi.org/10.1038/jhg.2013.114

    Article  CAS  PubMed  Google Scholar 

  188. Henson M (2018) Joint Position Statement from the International Society of Prenatal Diagnosis (ISPD), the Society of Maternal Fetal Medicine (SMFM) and the Perinatal Quality Foundation (PQF) on the use of genome-wide sequencing for fetal diagnosis. Prenat Diagn 38(1):6–9. https://doi.org/10.1002/pd.5195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brynn Levy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Levy, B., Stosic, M. (2019). Traditional Prenatal Diagnosis: Past to Present. In: Levy, B. (eds) Prenatal Diagnosis. Methods in Molecular Biology, vol 1885. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8889-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8889-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8887-7

  • Online ISBN: 978-1-4939-8889-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics