Skip to main content

Osteoclast Differentiation Assay

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1882))

Abstract

Osteoclasts are highly specialized multinucleated cells derived from the monocyte/macrophage hematopoietic lineage that are uniquely capable of adhering to bone matrix and resorbing bone. The tartrate-resistant acid phosphatase (TRAP) assay is the most common method to detect osteoclasts population in vitro. Here we described a general protocol of inducing osteoclast differentiation from the murine macrophage cell line, RAW264.7, and identification of osteoclasts with the classical TRAP assay.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Goldberg AF, Barka T (1962) Acid phosphatase activity in human blood cells. Nature 195:297

    Article  CAS  Google Scholar 

  2. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  CAS  Google Scholar 

  3. Chambers TJ (2000) Regulation of the differentiation and function of osteoclasts. J Pathol 192:4–13

    Article  CAS  Google Scholar 

  4. Marino S, Logan JG, Mellis D, Capulli M (2014) Generation and culture of osteoclasts. Bonekey Rep 3:570

    Article  CAS  Google Scholar 

  5. Takahashi N, Udagawa N, Kobayashi Y, Suda T (2007) Generation of osteoclasts in vitro, and assay of osteoclast activity. Methods Mol Med 135:285–301

    Article  CAS  Google Scholar 

  6. Atkins GJ, Bouralexis S, Haynes DR, Graves SE, Geary SM, Evdokiou A et al (2001) Osteoprotegerin inhibits osteoclast formation and bone resorbing activity in giant cell tumors of bone. Bone 28:370–377

    Article  CAS  Google Scholar 

  7. McSheehy PM, Chambers TJ (1986) Osteoblastic cells mediate osteoclastic responsiveness to parathyroid hormone. Endocrinology 118:824–828

    Article  CAS  Google Scholar 

  8. Arnett TR, Dempster DW (1987) A comparative study of disaggregated chick and rat osteoclasts in vitro: effects of calcitonin and prostaglandins. Endocrinology 120:602–608

    Article  CAS  Google Scholar 

  9. Boyde A, Ali NN, Jones SJ (1984) Resorption of dentine by isolated osteoclasts in vitro. Br Dent J 156:216–220

    Article  CAS  Google Scholar 

  10. Murrills RJ, Shane E, Lindsay R, Dempster DW (1989) Bone resorption by isolated human osteoclasts in vitro: effects of calcitonin. J Bone Miner Res 4:259–268

    Article  CAS  Google Scholar 

  11. Takahashi N, Akatsu T, Udagawa N, Sasaki T, Yamaguchi A, Moseley JM et al (1988) Osteoblastic cells are involved in osteoclast formation. Endocrinology 123:2600–2602

    Article  CAS  Google Scholar 

  12. Hemingway F, Cheng X, Knowles HJ, Estrada FM, Gordon S, Athanasou NA (2011) In vitro generation of mature human osteoclasts. Calcif Tissue Int 89:389–395

    Article  CAS  Google Scholar 

  13. Indo Y, Takeshita S, Ishii KA, Hoshii T, Aburatani H, Hirao A et al (2013) Metabolic regulation of osteoclast differentiation and function. J Bone Miner Res 28:2392–2399

    Article  CAS  Google Scholar 

  14. Quinn JM, Elliott J, Gillespie MT, Martin TJ (1998) A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology 139:4424–4427

    Article  CAS  Google Scholar 

  15. Tevlin R, McArdle A, Chan CK, Pluvinage J, Walmsley GG, Wearda T et al (2014) Osteoclast derivation from mouse bone marrow. J Vis Exp:e52056

    Google Scholar 

  16. Xing L, Boyce BF (2014) RANKL-based osteoclastogenic assays from murine bone marrow cells. Methods Mol Biol 1130:307–313

    Article  CAS  Google Scholar 

  17. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  CAS  Google Scholar 

  18. Yasuda H (2013) RANKL, a necessary chance for clinical application to osteoporosis and cancer-related bone diseases. World J Orthop 4:207–217

    Article  Google Scholar 

  19. Yoshida H, Hayashi SI, Kunisada T, Ogawa M, Nishikawa S, Okamura H et al (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345:442–444

    Article  CAS  Google Scholar 

  20. Park JH, Lee NK, Lee SY (2017) Current understanding of rank signaling in osteoclast differentiation and maturation. Mol Cells 40:706–713

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Takahashi N, Udagawa N, Suda T (1999) A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem Bioph Res Commun 256:449–455

    Article  CAS  Google Scholar 

  22. Fuller K, Murphy C, Kirstein B, Fox SW, Chambers TJ (2002) TNFa potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology 143:1108–1118

    Article  CAS  Google Scholar 

  23. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S et al (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 191:275–285

    Article  CAS  Google Scholar 

  24. Hsu HL, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E et al (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 96:3540–3545

    Article  CAS  Google Scholar 

  25. Coxon FP, Rogers MJ, Crockett JC (2012) Isolation and purification of rabbit osteoclasts. Methods Mol Biol 816:145–158

    Article  CAS  Google Scholar 

  26. Itzstein C, van’t Hof RJ (2012) Osteoclast formation in mouse co-cultures. Methods Mol Biol 816:177–186

    Article  CAS  Google Scholar 

  27. Littlewood-Evans A, Kokubo T, Ishibashi O, Inaoka T, Wlodarski B, Gallagher JA et al (1997) Localization of cathepsin K in human osteoclasts by in situ hybridization and immunohistochemistry. Bone 20:81–86

    Article  CAS  Google Scholar 

  28. Matsubara T, Myoui A, Ikeda F, Hata K, Yoshikawa H, Nishimura R et al (2006) Critical role of cortactin in actin ring formation and osteoclastic bone resorption. J Bone Miner Metab 24:368–372

    Article  CAS  Google Scholar 

  29. Matsubara T, Kinbara M, Maeda T, Yoshizawa M, Kokabu S, Takano YT (2017) Regulation of osteoclast differentiation and actin ring formation by the cytolinker protein plectin. Biochem Biophys Res Commun 489:472–476

    Article  CAS  Google Scholar 

  30. Nakamura I, Takahashi N, Sasaki T, Jimi E, Kurokawa T, Suda T (1996) Chemical and physical properties of the extracellular matrix are required for the actin ring formation in osteoclasts. J Bone Miner Res 11:1873–1879

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohong Bi or Min Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, J., Bi, X., Li, M. (2019). Osteoclast Differentiation Assay. In: Su, G. (eds) Pancreatic Cancer. Methods in Molecular Biology, vol 1882. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8879-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8879-2_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8878-5

  • Online ISBN: 978-1-4939-8879-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics