Skip to main content
Book cover

Autophagy pp 17–56Cite as

Structural Studies of Autophagy-Related Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1880))

Abstract

Information about the structure and dynamics of proteins is crucial for understanding their physiological functions as well as for the development of strategies to modulate these activities. In this chapter we will describe the work packages required to determine the three-dimensional structures of proteins involved in autophagy by using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Further we will provide instructions how to perform a molecular dynamics (MD) simulation using GABARAP as example protein.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Weiergräber OH, Stangler T, Thielmann Y, Mohrlüder J, Wiesehan K, Willbold D (2008) Ligand binding mode of GABAA receptor-associated protein. J Mol Biol 381:1320–1331

    Article  Google Scholar 

  2. Thielmann Y, Weiergräber OH, Mohrlüder J, Willbold D (2009) Structural framework of the GABARAP-calreticulin interface—implications for substrate binding to endoplasmic reticulum chaperones. FEBS J 276:1140–1152

    Article  CAS  Google Scholar 

  3. Ma P, Schillinger O, Schwarten M, Lecher J, Hartmann R, Stoldt M, Mohrlüder J, Olubiyi O, Strodel B, Willbold D, Weiergräber OH (2015) Conformational polymorphism in autophagy-related protein GATE-16. Biochemistry 54:5469–5479

    Article  CAS  Google Scholar 

  4. Michel M, Schwarten M, Decker C, Nagel-Steger L, Willbold D, Weiergräber OH (2015) The mammalian autophagy initiator complex contains 2 HORMA domain proteins. Autophagy 11:2300–2308

    Article  CAS  Google Scholar 

  5. Stangler T, Mayr LM, Dingley AJ, Luge C, Willbold D (2001) Sequence-specific 1H, 13C and 15N resonance assignments of human GABA receptor associated protein. J Biomol NMR 21:183–184

    Article  CAS  Google Scholar 

  6. Schwarten M, Stoldt M, Mohrlüder J, Willbold D (2009) Sequence-specific 1H, 13C, and 15N resonance assignment of the autophagy-related protein Atg8. Biomol NMR Assign 3:137–139

    Article  CAS  Google Scholar 

  7. Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94:12366–12371

    Article  CAS  Google Scholar 

  8. Schanda P, Van Melckebeke H, Brutscher B (2006) Speeding up three-dimensional protein NMR experiments to a few minutes. J Am Chem Soc 128:9042–9043

    Article  CAS  Google Scholar 

  9. Solyom Z, Schwarten M, Geist L, Konrat R, Willbold D, Brutscher B (2013) BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins. J Biomol NMR 55:311–321

    Article  CAS  Google Scholar 

  10. Stangler T, Mayr LM, Willbold D (2002) Solution structure of human GABA(A) receptor-associated protein GABARAP: implications for biological function and its regulation. J Biol Chem 277:13363–13366

    Article  CAS  Google Scholar 

  11. Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Magn Reson Spectrosc 34:93–158

    Article  CAS  Google Scholar 

  12. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696

    Article  CAS  Google Scholar 

  13. Yamazaki T, Formankay JD, Kay LE (1993) 2-dimensional Nmr experiments for correlating C-13-Beta and H-1-Delta/epsilon chemical-shifts of aromatic residues in C-13-Labeled proteins via scalar couplings. J Am Chem Soc 115:11054–11055

    Article  CAS  Google Scholar 

  14. Rieping W, Habeck M, Bardiaux B, Bernard A, Malliavin TE, Nilges M (2007) ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23:381–382

    Article  CAS  Google Scholar 

  15. Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241

    Article  CAS  Google Scholar 

  16. Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921

    Article  Google Scholar 

  17. Güntert P (2004) Automated NMR structure calculation with CYANA. Methods Mol Biol 278:353–378

    PubMed  Google Scholar 

  18. Schwarten M, Stoldt M, Mohrlüder J, Willbold D (2010) Solution structure of Atg8 reveals conformational polymorphism of the N-terminal domain. Biochem Biophys Res Commun 395:426–431

    Article  CAS  Google Scholar 

  19. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  CAS  Google Scholar 

  20. Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21

    Article  CAS  Google Scholar 

  21. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25

    Article  Google Scholar 

  22. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854

    Article  CAS  Google Scholar 

  23. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950–1958

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  25. Olsson MH, Søndergaard CR, Rostkowski M, Jensen JH (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 7:525–537

    Article  CAS  Google Scholar 

  26. Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 40:W537–W541

    Article  CAS  Google Scholar 

  27. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  Google Scholar 

  28. Hess B (2008) P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4:116–122

    Article  CAS  Google Scholar 

  29. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  30. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  31. Miao YL, McCammon JA (2016) Unconstrained enhanced sampling for free energy calculations of biomolecules: a review. Mol Simul 42:1046–1055

    Article  CAS  Google Scholar 

  32. Bernardi RC, Melo MCR, Schulten K (2015) Enhanced sampling techniques in molecular dynamics simulations of biological systems. BBA-Gen Subjects 1850:872–877

    Article  CAS  Google Scholar 

  33. Abrams C, Bussi G (2014) Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration. Entropy 16:163–199

    Article  Google Scholar 

  34. Klenin K, Strodel B, Wales DJ, Wenzel W (2011) Modelling proteins: conformational sampling and reconstruction of folding kinetics. Biochim Biophys Acta 1814:977–1000

    Article  CAS  Google Scholar 

  35. Bussi G (2013) Hamiltonian replica exchange in GROMACS: a flexible implementation. Mol Phys 112:379–384

    Article  Google Scholar 

  36. Wang LL, Friesner RA, Berne BJ (2011) Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2). J Phys Chem B 115:9431–9438

    Article  CAS  Google Scholar 

  37. Bonomi M, Branduardi D, Bussi G, Camilloni C, Provasi D, Raiteri P, Donadio D, Marinelli F, Pietrucci F, Broglia RA, Parrinello M (2009) PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun 180:1961–1972

    Article  CAS  Google Scholar 

  38. Moreno A (2017) Advanced methods of protein crystallization. Methods Mol Biol 1607:51–76

    Article  CAS  Google Scholar 

  39. Garman EF, Owen RL (2006) Cryocooling and radiation damage in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 62:32–47

    Article  Google Scholar 

  40. Scapin G (2013) Molecular replacement then and now. Acta Crystallogr D Biol Crystallogr 69:2266–2275

    Article  CAS  Google Scholar 

  41. Dodson E (2008) The befores and afters of molecular replacement. Acta Crystallogr D Biol Crystallogr 64:17–24

    Article  CAS  Google Scholar 

  42. Vagin A, Teplyakov A (1997) MOLREP: an automated program for molecular replacement. J Appl Crystallogr 30:1022–1025

    Article  CAS  Google Scholar 

  43. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  CAS  Google Scholar 

  44. Kissinger CR, Gehlhaar DK, Fogel DB (1999) Rapid automated molecular replacement by evolutionary search. Acta Crystallogr D Biol Crystallogr 55:484–491

    Article  CAS  Google Scholar 

  45. Taylor GL (2010) Introduction to phasing. Acta Crystallogr D Biol Crystallogr 66:325–338

    Article  CAS  Google Scholar 

  46. Grosse-Kunstleve RW, Schneider TR (2007) Substructure determination in isomorphous replacement and anomalous diffraction experiments. Methods Mol Biol 364:197–214

    CAS  PubMed  Google Scholar 

  47. Cowtan K (2010) Recent developments in classical density modification. Acta Crystallogr D Biol Crystallogr 66:470–478

    Article  CAS  Google Scholar 

  48. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Article  CAS  Google Scholar 

  49. Terwilliger TC, Adams PD, Read RJ, Mccoy AJ, Moriarty NW, Grosse-Kunstleve RW, Afonine PV, Zwart PH, Hung LW (2009) Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr D Biol Crystallogr 65:582–601

    Article  CAS  Google Scholar 

  50. Tronrud DE (2004) Introduction to macromolecular refinement. Acta Crystallogr D Biol Crystallogr 60:2156–2168

    Article  Google Scholar 

  51. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240–255

    Article  CAS  Google Scholar 

  52. Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD (2012) Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr 68:352–367

    Article  CAS  Google Scholar 

  53. Vajpai N, Gentner M, Huang JR, Blackledge M, Grzesiek S (2010) Side-chain χ1 conformations in urea-denatured ubiquitin and protein G from (3)J coupling constants and residual dipolar couplings. J Am Chem Soc 132:3196–3203

    Article  CAS  Google Scholar 

  54. Dux P, Whitehead B, Boelens R, Kaptein R, Vuister GW (1997) Measurement of (15)N- (1)H coupling constants in uniformly (15)N-labeled proteins: application to the photoactive yellow protein. J Biomol NMR 10:301–306

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding by the Deutsche Forschungsgemeinschaft (SFB1208 and SFB974) and the Jürgen Manchot Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Willbold .

Editor information

Editors and Affiliations

Appendix

Appendix

In the following, the five .mdp files needed for the MD simulation using GROMACS, which is explained in Subheading 2.3, are provided.

1.1 “ions.mdp” for Adding Ions

;; ions.mdp ; Run setup integrator    = steep emtol    = 1000 emstep    = 0.01 nsteps    = 2000 ; Neighbor search cutoff-scheme    = Verlet pbc    = xyz ; Electrostatics and vdW coulombtype    = PME pme-order    = 4 fourierspacing    = 0.1 rcoulomb    = 1.2 rvdw    = 1.2

1.2 “em.mdp” for Energy Minimization

;; em.mdp ; Run setup integrator    = steep emtol    = 500 emstep    = 0.001 nsteps    = 2000 nstxout    = 100 ; Neighbor searching cutoff-scheme    = Verlet nstlist    = 20 ns-type    = grid pbc    = xyz ; Electrostatics coulombtype    = PME pme-order    = 4 fourierspacing    = 0.1 rcoulomb    = 1.2 ; VdW rvdw    = 1.2

1.3 “nvt.mdp” for the Equilibration MD Run in the NVT Ensemble

;; nvt.mdp define    = -DPOSRES ; Run setup integrator    = md dt    = 0.002 nsteps    = 50000 ; Output control nstxout    = 5000 nstvout    = 5000 nstfout    = 5000 nstlog    = 500 nstenergy    = 500 ; Bonds constraints    = all-bonds constraint-algorithm    = LINCS lincs-order    = 4 lincs-iter    = 1 ; Neighbor searching cutoff-scheme    = Verlet nstlist    = 20 ns-type    = grid pbc    = xyz ; Electrostatics coulombtype    = PME pme-order    = 4 fourierspacing    = 0.1 rcoulomb    = 1.2 ; VdW rvdw    = 1.2 ; T coupling is on tcoupl    = v-rescale tc-grps    = Protein Non-Protein tau-t    = 0.1 0.1 ref-t    = 298 298 nsttcouple    = 10 ; P coupling is off pcoupl    = no ; Velocity generation gen-vel    = yes gen-temp    = 298 continuation    = no

1.4 “npt.mdp” for the Equilibration MD Run in the NPT Ensemble

;; npt.mdp define    = -DPOSRES ; Run setup integrator    = md dt    = 0.002 nsteps    = 100000 ; Output control nstxout    = 5000 nstvout    = 5000 nstfout    = 5000 nstlog    = 500 nstenergy    = 500 ; Bonds constraints    = all-bonds constraint-algorithm    = LINCS lincs-order    = 4 lincs-iter    = 1 ; Neighbor searching cutoff-scheme    = Verlet nstlist    = 20 ns-type    = grid pbc    = xyz ; Electrostatics coulombtype    = PME pme-order    = 4 fourierspacing    = 0.1 rcoulomb    = 1.2 ; VdW rvdw    = 1.2 ; T coupling is on tcoupl    = v-rescale tc-grps    = Protein Non-Protein tau-t    = 0.1 0.1 ref-t    = 298 298 nsttcouple    = 10 ; P coupling is on pcoupl    = berendsen pcoupltype    = isotropic tau_p    = 1.0 ref_p    = 1.0 compressibility    = 4.5e-5 refcoord_scaling    = com ; Velocity generation gen-vel    = no gen-temp    = 298 continuation    = yes

1.5 “md.mdp” for the Production MD Run

;; md.mdp ; Run setup integrator    = md dt    = 0.002 nsteps    = 5000000 ; Output control nstxout    = 0 nstvout    = 0 nstfout    = 0 nstlog    = 2500 nstenergy    = 2500 nstxout-compressed    = 2500 compressed-x-grps    = System ; Bonds constraints    = all-bonds constraint-algorithm    = LINCS lincs-order    = 4 lincs-iter    = 1 ; Neighbor searching cutoff-scheme    = Verlet nstlist    = 20 ns-type    = grid pbc    = xyz ; Electrostatics coulombtype    = PME pme-order    = 4 fourierspacing    = 0.1 rcoulomb    = 1.2 ; VdW rvdw    = 1.2 ; T coupling is on tcoupl    = v-rescale tc-grps    = Protein Non-Protein tau-t    = 0.1 0.1 ref-t    = 298 298 nsttcouple    = 10 ; Pressure coupling is off pcoupl    = Parrinello-Rahman pcoupltype    = isotropic tau_p    = 2.0 ref_p    = 1.0 compressibility    = 4.5e-5 ; Velocity generation gen-vel    = no gen-temp    = 298 continuation    = yes

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schwarten, M., Weiergräber, O.H., Petrović, D., Strodel, B., Willbold, D. (2019). Structural Studies of Autophagy-Related Proteins. In: Ktistakis, N., Florey, O. (eds) Autophagy. Methods in Molecular Biology, vol 1880. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8873-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8873-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8872-3

  • Online ISBN: 978-1-4939-8873-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics