Skip to main content

Neuropsychological Assessment of Extremely Preterm Children

  • Chapter
  • First Online:
Physician's Field Guide to Neuropsychology

Abstract

Preterm Children: In this chapter, we review neuropsychological outcomes among children born preterm and provide a case example of a 6-year-old girl who was born at 27 weeks. The chapter highlights the importance of assessing children born preterm at multiple stages in their early development, as well as the still common comorbid cognitive and behavioral issues observed in this population. These issues are put into context as they relate to the child’s neurological exam, the physician’s perspective of brain injury in premature newborns, as well as the role of neuropsychologists and benefits of early assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention. National prematurity awareness month; learn more about premature birth, risk factors, and what you can do. 2015. www.cdc.gov.

  2. Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller A-B, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379(379):2162–72.

    Article  PubMed  Google Scholar 

  3. Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet. 2008;371(9608):261–9.

    Article  PubMed  Google Scholar 

  4. Anderson PJ, Doyle LW. Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. JAMA. 2003;289(24):3264–72. https://doi.org/10.1001/jama.289.24.3264.

    Article  PubMed  Google Scholar 

  5. Aylward GP. Neurodevelopmental outcomes of infants born prematurely. J Dev Behav Pediatr. 2005;26(6):427–40. https://doi.org/10.1097/00004703-200512000-00008.

    Article  PubMed  Google Scholar 

  6. Bhutta AT, Casey PH, Cradock MM, Anand K, Cleves AM. Cognitive and behavioral outcomes of school-aged children who were born preterm. JAMA. 2002;288(6):728–37.

    Article  PubMed  Google Scholar 

  7. Hack M, Taylor G, Drotar D, Schluchter M, Cartar L, Wilson-Costello D, et al. Poor predictive validity of the Bayley Scales of infant development for cognitive function and extremely low birth weight children at school age. Pediatrics. 2005;116(2):333–41.

    Article  PubMed  Google Scholar 

  8. Kerr-Wilson CO, MacKay DF, Smith GCS, Pell JP. Meta-analysis of the association between preterm delivery and intelligence. J Public Health (Oxf). 2011;34(2):209–16. https://doi.org/10.1093/pubmed/fdr024.

    Article  Google Scholar 

  9. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8(1):110–24. https://doi.org/10.1016/S1474-4422(08)70294-1.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hamrick SEG, Miller SP, Leonard C, Glidden DV, Goldstein R, Ramaswamy V, et al. Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: the role of cystic periventricular leukomalacia. J Pediatr. 2004;145(5):593–9. https://doi.org/10.1016/j.jpeds.2004.05.042.

    Article  PubMed  Google Scholar 

  11. Van Haastert IC, Groenendaal F, Uiterwaal CSPM, Termote JUM, Van Der Heide-Jalving M, Eijsermans MJC, et al. Decreasing incidence and severity of cerebral palsy in prematurely born children. J Pediatr. 2011;159(1):86–91.e1. https://doi.org/10.1016/j.jpeds.2010.12.053.

    Article  PubMed  Google Scholar 

  12. Chau V, Synnes A, Grunau RE, Poskitt KJ, Brant R, Miller SP. Abnormal brain maturation in preterm neonates associated with adverse developmental outcomes. Neurology. 2013;81(24):2082–9. https://doi.org/10.1212/01.wnl.0000437298.43688.b9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Miller SP, Ferriero DM, Leonard C, Piecuch R, Glidden DV, Partridge JC, et al. Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse early neurodevelopmental outcome. J Pediatr. 2005;147(5):609–16. https://doi.org/10.1016/j.jpeds.2005.06.033.

    Article  PubMed  Google Scholar 

  14. Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med. 2006;355:685–94.

    Article  CAS  PubMed  Google Scholar 

  15. Back SA. Perinatal white matter injury: the changing spectrum of pathology and emerging insights into pathogenetic mechanisms. Ment Retard Dev Disabil Res Rev. 2006;12(2):129–40. https://doi.org/10.1002/mrdd.20107.

    Article  PubMed  Google Scholar 

  16. Back SA, Han BH, Luo NL, Chricton CA, Xanthoudakis S, Tam J, et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci. 2002;22(2):455–63. http://doi.org/22/2/455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Degos V, Favrais G, Kaindl AM, Peineau S, Guerrot AM, Verney C, Gressens P. Inflammation processes in perinatal brain damage. J Neural Transm. 2010;117(8):1009–17. https://doi.org/10.1007/s00702-010-0411-x.

    Article  PubMed  Google Scholar 

  18. Chau V, Brant R, Poskitt KJ, Tam EWY, Synnes A, Miller SP. Postnatal infection is associated with widespread abnormalities of brain development in premature newborns. Pediatr Res. 2012;71(3):274–9. https://doi.org/10.1038/pr.2011.40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dammann O, Kuban KCK, Leviton A. Perinatal infection, fetal inflammatory response, white matter damage, and cognitive limitations in children born preterm. Ment Retard Dev Disabil Res Rev. 2002;8(1):46–50. https://doi.org/10.1002/mrdd.10005.

    Article  PubMed  Google Scholar 

  20. Dammann O, Leviton A. Maternal Intrauterine infection, cytokines, and brain damage in the preterm newborn. Pediatr Res. 1997;42(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  21. Yoon BH, Jun JK, Romero R, Park KH, Gomez R, Choi J-H, Kim I-O. Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1β, and tumor necrosis factor-α), neonatal brain white matter lesions, and cerebral palsy. Am J Obstet Gynecol. 1997;177(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  22. Yoon BH, Romero R, Kim CJ, Koo JN, Choe G, Syn HC, Chi JG. High expression of tumor necrosis factor-alpha and interleukin-6 in periventricular leukomalacia. Am J Obstet Gynecol. 1997;177:406–11. https://doi.org/10.1016/S0002-9378(97)70206-0.

    Article  CAS  PubMed  Google Scholar 

  23. Buser JR, Maire J, Riddle A, Gong X, Nguyen T, Nelson K, et al. Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants. Ann Neurol. 2012;71(1):93–109. https://doi.org/10.1002/ana.22627.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Segovia KN, McClure M, Moravec M, Ning LL, Wan Y, Gong X, et al. Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann Neurol. 2008;63(4):520–30. https://doi.org/10.1002/ana.21359.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tam EWY, Miller SP, Studholme C, Chau V, Glidden D, Poskitt KJ, et al. Differential effects of intraventricular hemorrhage and white matter injury on preterm cerebellar growth. J Pediatr. 2011;158(3):366–71. https://doi.org/10.1016/j.jpeds.2010.09.005.

    Article  PubMed  Google Scholar 

  26. Vinall J, Grunau RE, Brant R, Chau V, Poskitt KJ, Synnes AR, Miller SP. Slower postnatal growth is associated with delayed cerebral cortical maturation in preterm newborns. Sci Transl Med. 2013;5(168):168ra8.

    Article  PubMed  Google Scholar 

  27. Bassan H, Feldman HA, Limperopoulos C, Benson CB, Ringer SA, Veracruz E, et al. Periventricular hemorrhagic infarction: risk factors and neonatal outcome. Pediatr Neurol. 2006;35(2):85–92. https://doi.org/10.1016/j.pediatrneurol.2006.03.005.

    Article  PubMed  Google Scholar 

  28. Larroque B, Marret S, Ancel PY, Arnaud C, Marpeau L, Supernant K, et al. White matter damage and intraventricular hemorrhage in very preterm infants: the epipage study. J Pediatr. 2003;143(4):477–83. https://doi.org/10.1067/S0022-3476(03)00417-7.

    Article  PubMed  Google Scholar 

  29. Murphy BP, Inder TE, Rooks V, Taylor GA, Anderson NJ, Mogridge N, et al. Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome. Arch Dis Child Fetal Neonatal Ed. 2002;87(September 1997):37–41. https://doi.org/10.1136/fn.87.1.F37.

    Article  Google Scholar 

  30. Hambleton G, Wigglesworth JS. Origin of intraventricular haemorrhage in the preterm infant. Arch Dis Child. 1976;51(9):651–9. https://doi.org/10.1136/adc.51.9.651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Counsell SJ, Dyet LE, Larkman DJ, Nunes RG, Boardman JP, Allsop JM, et al. Thalamo-cortical connectivity in children born preterm mapped using probabilistic magnetic resonance tractography. Neuroimage. 2007;34(3):896–904. https://doi.org/10.1016/j.neuroimage.2006.09.036.

    Article  PubMed  Google Scholar 

  32. Marin-Padilla M. Developmental neuropathology and impact of perinatal brain damage. II: White matter lesions of the neocortex. J Neuropathol Exp Neurol. 1997;56(3):219–35.

    Article  CAS  PubMed  Google Scholar 

  33. Whitelaw A. Intraventricular haemorrhage and posthaemorrhagic hydrocephalus: pathogenesis, prevention and future interventions. Semin Neonatol. 2001;6(2):135–46. https://doi.org/10.1053/siny.2001.0047.

    Article  CAS  PubMed  Google Scholar 

  34. Rennie JM. Cerebral blood flow velocity variability after cardiovascular support in premature babies. Arch Dis Child. 1989;64(7 Spec No):897–901. https://doi.org/10.1136/adc.64.7_Spec_No.897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Perry EH, Bada HS, Ray JD, Korones SB, Arheart K, Magill HL. Blood pressure increases, birth weight-dependent stability boundary, and intraventricular hemorrhage. Pediatrics. 1990;85(5):727–32. http://pubmed.gov/2330232

    CAS  PubMed  Google Scholar 

  36. Kadri H, Mawla AA, Kazah J. The incidence, timing, and predisposing factors of germinal matrix and intraventricular hemorrhage (GMH/IVH) in preterm neonates. Childs Nerv Syst. 2006;22(9):1086–90. https://doi.org/10.1007/s00381-006-0050-6.

    Article  PubMed  Google Scholar 

  37. Wong HS, Edwards P. Nature or nurture: a systematic review of the effect of socio-economic status on the developmental and cognitive outcomes of children born preterm. Matern Child Health J. 2013;17(9):1689–700. https://doi.org/10.1007/s10995-012-1183-8.

    Article  PubMed  Google Scholar 

  38. Wang LW, Wang ST, Huang CC. Preterm infants of educated mothers have better outcome. Acta Paediatr. 2008;97(5):568–73. https://doi.org/10.1111/j.1651-2227.2008.00738.x.

    Article  PubMed  Google Scholar 

  39. Blumenshine P, Egerter S, Barclay CJ, Cubbin C, Braveman PA. Socioeconomic disparities in adverse birth outcomes: a systematic review. Am J Prev Med. 2010;39(3):263–72. https://doi.org/10.1016/j.amepre.2010.05.012.

    Article  PubMed  Google Scholar 

  40. Parker S, Greer S, Zuckerman B. Double jeopardy: the impact of poverty on early child development. Pediatr Clin North Am. 1998;35(6):1227.

    Article  Google Scholar 

  41. Valeri BO, Holsti L, Linhares MBM. Neonatal pain and developmental outcomes in children born preterm: a systematic review. Clin J Pain. 2014;31(4):1–31. https://doi.org/10.1097/AJP.0000000000000114.

    Article  Google Scholar 

  42. Vinall J, Miller SP, Chau V, Brummelte S, Synnes AR, Grunau RE. Neonatal pain in relation to postnatal growth in infants born very preterm. Pain. 2012;153(7):1374–81. https://doi.org/10.1016/j.pain.2012.02.007.

    Article  PubMed  Google Scholar 

  43. Brummelte S, Grunau RE, Chau V, Poskitt KJ, Brant R, Vinall J, et al. Procedural pain and brain development in premature newborns. Ann Neurol. 2012;71(3):385–96.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Erdeve O, Arsan S, Yigit S, Armangil D, Atasay B, Korkmaz A. The impact of individual room on rehospitalization and health service utilization in preterms after discharge. Acta Paediatr. 2008;97(10):1351–7.

    Article  CAS  PubMed  Google Scholar 

  45. Ortenstrand A, Westrup B, Broström EB, Sarman I, Akerström S, Brune T, et al. The Stockholm Neonatal Family Centered Care Study: effects on length of stay and infant morbidity. Pediatrics. 2010;125(2):e278–85. https://doi.org/10.1542/peds.2009-1511.

    Article  PubMed  Google Scholar 

  46. Domanico R, Davis DK, Coleman F, Davis BO. Documenting the NICU design dilemma: comparative patient progress in open-ward and single family room units. J Perinatol. 2011;31(4):281–8. https://doi.org/10.1038/jp.2010.120.

    Article  CAS  PubMed  Google Scholar 

  47. Lester BM, Hawes K, Abar B, Sullivan M, Miller R, Bigsby R, et al. Single-family room care and neurobehavioral and medical outcomes in preterm infants. Pediatrics. 2014;134(4):754–60. https://doi.org/10.1542/peds.2013-4252.

    Article  PubMed  Google Scholar 

  48. Als H, McAnulty GB. The Newborn Individualized Developmental Care and Assessment Program (NIDCAP) with Kangaroo Mother Care (KMC): comprehensive care for preterm infants. Curr Womens Aust Health Rev. 2011;7(3):288–301. https://doi.org/10.2174/157340411796355216.

    Article  Google Scholar 

  49. Kaaresen PI, Rønning J. a, Ulvund SE, Dahl LB. A randomized, controlled trial of the effectiveness of an early-intervention program in reducing parenting stress after preterm birth. Pediatrics. 2006;118(1):e9–e19. https://doi.org/10.1542/peds.2005-1491.

    Article  PubMed  Google Scholar 

  50. Koldewijn K, Wolf M-J, van Wassenaer A, Meijssen D, van Sonderen L, van Baar A, et al. The Infant Behavioral Assessment and Intervention Program for very low birth weight infants at 6 months corrected age. J Pediatr. 2009;154(1):33–38.e2. https://doi.org/10.1016/j.jpeds.2008.07.039.

    Article  PubMed  Google Scholar 

  51. Spittle AJ, Ferretti C, Anderson PJ, Orton J, Eeles A, Bates L, et al. Improving the outcome of infants born at <30 weeks’ gestation—a randomized controlled trial of preventative care at home. BMC Pediatr. 2009;9:73. https://doi.org/10.1186/1471-2431-9-73.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Als H, Duffy FH, McAnulty G, Butler SC, Lightbody L, Kosta S, et al. NIDCAP improves brain function and structure in preterm infants with severe intrauterine growth restriction. J Perinatol. 2012;32(10):797–803. https://doi.org/10.1038/jp.2011.201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Milgrom J, Newnham C, Anderson PJ, Doyle LW, Gemmill AW, Lee K, et al. Early sensitivity training for parents of preterm infants: impact on the developing brain. Pediatr Res. 2010;67(3):330–5. https://doi.org/10.1203/PDR.0b013e3181cb8e2f.

    Article  PubMed  Google Scholar 

  54. Baron IS, Rey-Casserly C. Preterm birth outcomes in adolescence and young adulthood. In: Pediatric neuropsychology: medical advances and lifespan outcomes. New York, NY: Oxford University Press; 2013. p. 237–56.

    Google Scholar 

  55. Aarnoudse-Moens CSH, Weisglas-Kuperus N, van Goudoever J, Oosterlaan J. Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics. 2009;124(2):717–28. https://doi.org/10.1542/peds.2008-2816.

    Article  PubMed  Google Scholar 

  56. Bohm B, Smedler AC, Forssberg H. Impulse control, working memory and other executive functions in preterm children when starting school. Acta Paediatr. 2004;93(10):1363–71. https://doi.org/10.1080/08035250410021379.

    Article  CAS  PubMed  Google Scholar 

  57. Marlow N, Hennessy EM, Bracewell MA, Wolke D. Motor and executive function at 6 years of age after extremely preterm birth. Pediatrics. 2007;120(4):793–804. https://doi.org/10.1542/peds.2007-0440.

    Article  PubMed  Google Scholar 

  58. Nosarti C, Giouroukou E, Micali N, Rifkin L, Morris RG, Murray RM. Impaired executive functioning in young adults born very preterm. J Int Neuropsychol Soc. 2007;13(4):571–81. https://doi.org/10.1017/S1355617707070725.

    Article  PubMed  Google Scholar 

  59. Pizzo R, Urben S, Van Der Linden M, Borradori-Tolsa C, Freschi M, Forcada-Guex M, et al. Attentional networks efficiency in preterm children. J Int Neuropsychol Soc. 2010;16(1):130–7. https://doi.org/10.1017/S1355617709991032.

    Article  CAS  PubMed  Google Scholar 

  60. Baron IS, Anderson PJ. Neuropsychological assessment of preschoolers. Neuropsychol Rev. 2012;22(4):311–2. https://doi.org/10.1007/s11065-012-9221-2.

    Article  PubMed  Google Scholar 

  61. Brooks BL. A study of low scores in Canadian children and adolescents on the Wechsler Intelligence Scale For Children, Fourth Edition (WISC-IV). Child Neuropsychol. 2011;17(3):281–9. https://doi.org/10.1080/09297049.2010.537255.

    Article  PubMed  Google Scholar 

  62. Brooks BL, Iverson GL. Comparing actual to estimated base rates of “abnormal” scores on neuropsychological test batteries: implications for interpretation. Arch Clin Neuropsychol. 2010;25(1):14–21. https://doi.org/10.1093/arclin/acp100.

    Article  PubMed  Google Scholar 

  63. Brooks BL, Iverson GL, Feldman HH, Holdnack JA. Minimizing misdiagnosis: psychometric criteria for possible or probable memory impairment. Dement Geriatr Cogn Disord. 2009;27(5):439–50. https://doi.org/10.1159/000215390.

    Article  PubMed  Google Scholar 

  64. Engle WA. Age terminology during the perinatal period. Pediatrics. 2004;114(5):1362–4.

    Article  PubMed  Google Scholar 

  65. Van Veen S, Aarnoudse-Moens CSH, Van Kaam AH, Oosterlaan J, Van Wassenaer-Leemhuis AG. Consequences of correcting intelligence quotient for prematurity at age 5 years. J Pediatr. 2016;173:90–5. https://doi.org/10.1016/j.jpeds.2016.02.043.

    Article  PubMed  Google Scholar 

  66. Wilson-Ching M, Pascoe L, Doyle LW, Anderson PJ. Effects of correcting for prematurity on cognitive test scores in childhood. J Paediatr Child Health. 2014;50(3):182–8. https://doi.org/10.1111/jpc.12475.

    Article  PubMed  Google Scholar 

  67. Taylor HG, Klein N, Drotar D, Schluchter M, Hack M. Consequences and risks of <1000-g birth weight for neuropsychological skills, achievement, and adaptive functioning. J Dev Behav Pediatr. 2006;27(6):459–69. http://doi.org/00004703-200612000-00002

    Article  PubMed  Google Scholar 

  68. Hoff Esbjorn B, Hansen BM, Greisen G, Mortensen EL. Intellectual development in a Danish cohort of prematurely born preschool children: specific or general difficulties? J Dev Behav Pediatr. 2006;27(6):477–84. https://doi.org/10.1097/00004703-200612000-00004.

    Article  PubMed  Google Scholar 

  69. Bayless S, Stevenson J. Executive functions in school-age children born very prematurely. Early Hum Dev. 2007;83(4):247–54. https://doi.org/10.1016/j.earlhumdev.2006.05.021.

    Article  PubMed  Google Scholar 

  70. Joseph RM, O’Shea TM, Allred EN, Heeren T, Hirtz D, Jara H, et al. Neurocognitive and academic outcomes at age 10 years of extremely preterm newborns. Pediatrics. 2016;137(4). https://doi.org/10.1542/peds.2015-4343.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lind A, Korkman M, Lehtonen L, Lapinleimu H, Parkkola R, Matomäki J, Haataja L. Cognitive and neuropsychological outcomes at 5 years of age in preterm children born in the 2000s. Dev Med Child Neurol. 2011;53(3):256–62. https://doi.org/10.1111/j.1469-8749.2010.03828.x.

    Article  PubMed  Google Scholar 

  72. Baron IS, Rey-Casserly C. Extremely preterm birth outcome: a review of four decades of cognitive research. Neuropsychol Rev. 2010;20(4):430–52. https://doi.org/10.1007/s11065-010-9132-z.

    Article  PubMed  Google Scholar 

  73. Stålnacke J, Lundequist A, Böhm B, Forssberg H, Smedler A-C. Individual cognitive patterns and developmental trajectories after preterm birth. Child Neuropsychol. 2015;7049(September):1–20. https://doi.org/10.1080/09297049.2014.958071.

    Article  Google Scholar 

  74. Anderson PJ. Neuropsychological outcomes of children born very preterm. Semin Fetal Neonatal Med. 2014;19(2):90–6. https://doi.org/10.1016/j.siny.2013.11.012.

    Article  PubMed  Google Scholar 

  75. Howard K, Anderson P, Taylor HG. Executive functioning and attention in children born preterm. In: Executive functions and the frontal lobe: a lifespan perspective. Philadelphia: Taylor & Francis; 2008. p. 219–41.

    Google Scholar 

  76. Trevaud K, Ure A, Doyle LW, Lee KJ, Rogers CE, Kidokoro H, Inder TE, Anderson P. Psychiatric outcomes at age seven for very preterm children: Rates and predictors. J Child Psychol Psychiatry. 2013;54(7):772–9.

    Article  Google Scholar 

  77. Edgin JO, Inder TE, Anderson PJ, Hood KM, Clark CA, Woodward LJ. Executive functioning in preschool children born very preterm: relationship with early white matter pathology. J Int Neuropsychol Soc. 2008;14(1):90–101. https://doi.org/10.1017/S1355617708080053.

    Article  PubMed  Google Scholar 

  78. Murray AL, Scratch SE, Thompson DK, Inder TE, Doyle LW, Anderson JFI, Anderson PJ. Neonatal brain pathology predicts adverse attention and processing speed outcomes in very preterm and/or very low birth weight children. Neuropsychology. 2014;28(4):552–62. https://doi.org/10.1037/neu0000071.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Murray AL, Thompson DK, Pascoe L, Leemans A, Inder TE, Doyle LW, et al. White matter abnormalities and impaired attention abilities in children born very preterm. Neuroimage. 2016;124:75–84. https://doi.org/10.1016/j.neuroimage.2015.08.044.

    Article  PubMed  Google Scholar 

  80. Baron IS, Kerns KA, Müller U, Ahronovich MD, Litman FR. Executive functions in extremely low birth weight and late-preterm preschoolers: effects on working memory and response inhibition. Child Neuropsychol. 2012;18(6):586–99. https://doi.org/10.1080/09297049.2011.631906.

    Article  PubMed  Google Scholar 

  81. Reidy N, Morgan A, Thompson DK, Inder TE, Doyle LW, Anderson PJ. Impaired language abilities and white matter abnormalities in children born very preterm and/or very low birth weight. J Pediatr. 2013;162(4):719–24. https://doi.org/10.1016/j.jpeds.2012.10.017.

    Article  PubMed  Google Scholar 

  82. van Noort-van der Spek IL, Franken CJ, Weisglas-Kuperus N. Language functions in preterm-born children : a systematic review and meta-analysis. Pediatrics. 2012;129(4):745–54. https://doi.org/10.1542/peds.2011-1728.

    Article  PubMed  Google Scholar 

  83. Luu TM, Vohr BR, Allan W, Schneider KC, Ment LR. Evidence for catch-up in cognition and receptive vocabulary among adolescents born very preterm. Pediatrics. 2011;128(2):313–22. https://doi.org/10.1542/peds.2010-2655.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Böhm B, Lundequist A, Smedler AC. Visual-motor and executive functions in children born preterm: the bender visual motor gestalt test revisited. Scand J Psychol. 2010;51(5):376–84. https://doi.org/10.1111/j.1467-9450.2010.00818.x.

    Article  PubMed  Google Scholar 

  85. Grunau RE, Whitfield MF, Petrie-Thomas J, Synnes AR, Cepeda IL, Keidar A, et al. Neonatal pain, parenting stress and interaction, in relation to cognitive and motor development at 8 and 18 months in preterm infants. Pain. 2009;143(1–2):138–46. https://doi.org/10.1016/j.pain.2009.02.014.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Heineman KR, La Bastide-Van Gemert S, Fidler V, Middelburg KJ, Bos AF, Hadders-Algra M. Construct validity of the Infant Motor Profile: relation with prenatal, perinatal, and neonatal risk factors. Dev Med Child Neurol. 2010;52(9):209–15. https://doi.org/10.1111/j.1469-8749.2010.03667.x.

    Article  Google Scholar 

  87. Gerner EM, Katz-Salamon M, Hesser U, Soderman E, Forssberg H. Psychomotor development at 10 months as related to neonatal health status: the Stockholm Neonatal Project. Acta Paediatr Suppl. 1997;419(i):37–43. https://doi.org/10.1111/j.1651-2227.1997.tb18307.x.

    Article  CAS  PubMed  Google Scholar 

  88. Doesburg SM, Chau CM, Cheung TPL, Moiseev A, Ribary U, Herdman AT, et al. Neonatal pain-related stress, functional cortical activity and visual-perceptual abilities in school-age children born at extremely low gestational age. Pain. 2013;154(10):1946–52. https://doi.org/10.1016/j.pain.2013.04.009.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Doesburg SM, Moiseev A, Herdman AT, Ribary U, Grunau RE. Region-specific slowing of alpha oscillations is associated with visual-perceptual abilities in children born very preterm. Front Hum Neurosci. 2013;7(November):791. https://doi.org/10.3389/fnhum.2013.00791.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Omizzolo C, Thompson DK, Scratch SE, Stargatt R, Lee KJ, Cheong J, et al. Hippocampal volume and memory and learning outcomes at 7 years in children born very preterm. J Int Neuropsychol Soc. 2013;19(10):1065–75. https://doi.org/10.1017/S1355617713000891.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rose AS, Feldman JF. Memory and processing speed in preterm children at eleven years: a comparison with full-terms. Child Dev. 1996;67:2005–21.

    Article  CAS  PubMed  Google Scholar 

  92. Rose SA, Feldman JF, Jankowski JJ. Information processing in toddlers: continuity from infancy and persistence of preterm deficits. Dermatol Int. 2009;37(3):311–20. https://doi.org/10.1016/j.intell.2009.02.002.

    Article  Google Scholar 

  93. Briscoe J, Gathercole SE, Marlow N. Everyday memory and cognitive ability in children born very prematurely. J Child Psychol Psychiatry Allied Discip 2001;42(6):749–754. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=11583247\nhttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed5&NEWS=N&AN=2001324733. PMID: 11583247.

    Google Scholar 

  94. Roberts G, Lim J, Doyle LW, Anderson PJ. High rates of school readiness difficulties at 5 years of age in very preterm infants compared with term controls. J Dev Behav Pediatr. 2011;32(2):117–24. https://doi.org/10.1097/DBP.0b013e318206d5c9.

    Article  PubMed  Google Scholar 

  95. Luu TM, Vohr BR, Schneider KC, Katz KH, Tucker R, Allan WC, Ment LR. Trajectories of receptive language development from 3 to 12 years of age for very pretermchildren. Pediatrics. 2009;124(1):333–41. https://doi.org/10.1542/peds.2008-2587.

    Article  PubMed  Google Scholar 

  96. Johnson S, Hollis C, Kochhar P, Hennessy E, Wolke D, Marlow N. Autism spectrum disorders in extremely preterm children. J Pediatr. 2010;156(4):525–531.e2. https://doi.org/10.1016/j.jpeds.2009.10.041.

    Article  Google Scholar 

  97. Karmel BZ, Gardner JM, Meade LS, Cohen IL, London E, Flory MJ, et al. Early medical and behavioral characteristics of NICU infants later classified with ASD. Pediatrics. 2010;126(3):457–67. https://doi.org/10.1542/peds.2009-2680.

    Article  PubMed  Google Scholar 

  98. Kodjebacheva GD, Sabo T. Influence of premature birth on the health conditions, receipt of special education and sport participation of children aged 6-17 years in the USA. J Public Health (Oxf). 2015;38(2):e47–54. https://doi.org/10.1093/pubmed/fdv098.

    Article  Google Scholar 

  99. CADDRA. n.d. http://www.caddra.ca.

  100. CHADD. n.d. http://www.chadd.org/.

  101. .National Institute of Mental Health. n.d.

    Google Scholar 

  102. Subcommittee on Attention-Deficit/Hyperactivity Disorder, & Steering Committee on Quality Improvement and Management. ADHD: clinical practice guidelines for the diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder in children and dolescents. Pediatrics. 2011;128(5):1007–22.

    Google Scholar 

  103. Spittle A, Orton J, Anderson PJ, Boyd R, Doyle LW. Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. Cochrane Database Syst Rev. 2015;11(12):CD005495. https://doi.org/10.1002/14651858.CD005495.pub4.

    Article  Google Scholar 

  104. Neece CL, Baker BL, Crnic K, Blacher J. Examining the validity of ADHD as a diagnosis for adolescents with intellectual disabilities: clinical presentation. J Abnorm Child Psychol. 2013;41(4):597–612. https://doi.org/10.1007/s10802-012-9698-4.

    Article  PubMed  Google Scholar 

  105. Simonoff E, Pickles A, Wood N, Gringras P, Chadwick O. ADHD symptoms in children with mild intellectual disability. J Am Acad Child Adolesc Psychiatry. 2007;46(May):591–600. https://doi.org/10.1097/chi.0b013e3180323330.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tricia Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williams, T., Roberts, S., Chau, V. (2019). Neuropsychological Assessment of Extremely Preterm Children. In: Sanders, K. (eds) Physician's Field Guide to Neuropsychology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8722-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8722-1_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8720-7

  • Online ISBN: 978-1-4939-8722-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics