Skip to main content

Native Gel Approaches in Studying Proteasome Assembly and Chaperones

  • Protocol
  • First Online:
The Ubiquitin Proteasome System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1844))

Abstract

Proteasomes are complex molecular machines that consist of 66 subunits. The assembly of these complexes is highly coordinated in a process that requires at least ten proteasome-specific molecular chaperones. One of the challenges in studying assembly intermediates is their relatively low abundance as compared to the proteasome holoenzyme. Therefore, superior separating techniques are crucial for analyses of proteasomal complexes in general and studies in the assembly in particular. For this reason, native gel analyses have been abundantly used in studying proteasomes, as they provide a high resolution. Native gels are very versatile and can be used in various combinatorial approaches. In this chapter, we outline two approaches to prepare samples for native gels. The first is a yeast cryogrinding method and the second a core particle (CP)-base reconstitution approach. We describe the native gel electrophoresis, as well as various downstream analyses, including 2D native-SDS-PAGE. These techniques and approaches can all be used, often in parallel, to gain a variety of information about activity and composition of the complexes separated by native gel. The potential combined approaches are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kressler D, Hurt E, Bassler J (2017) A puzzle of life: crafting ribosomal subunits. Trends Biochem Sci 42(8):640–654. https://doi.org/10.1016/j.tibs.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  2. Ellis RJ (2013) Assembly chaperones: a perspective. Philos Trans R Soc Lond B Biol Sci 368(1617):20110398. https://doi.org/10.1098/rstb.2011.0398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Budenholzer L, Cheng CL, Li Y, Hochstrasser M (2017) Proteasome structure and assembly. J Mol Biol 429(22):3500–3524. https://doi.org/10.1016/j.jmb.2017.05.027

    Article  CAS  PubMed  Google Scholar 

  4. Wani PS, Rowland MA, Ondracek A, Deeds EJ, Roelofs J (2015) Maturation of the proteasome core particle induces an affinity switch that controls regulatory particle association. Nat Commun 6:6384. https://doi.org/10.1038/ncomms7384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ramos PC, Hockendorff J, Johnson ES, Varshavsky A, Dohmen RJ (1998) Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 92(4):489–499. https://doi.org/10.1016/S0092-8674(00)80942-3

    Article  CAS  PubMed  Google Scholar 

  6. Kock M, Nunes MM, Hemann M, Kube S, Dohmen RJ, Herzog F, Ramos PC, Wendler P (2015) Proteasome assembly from 15S precursors involves major conformational changes and recycling of the Pba1-Pba2 chaperone. Nat Commun 6:6123. https://doi.org/10.1038/ncomms7123

    Article  CAS  PubMed  Google Scholar 

  7. Shi Y, Chen X, Elsasser S, Stocks BB, Tian G, Lee BH, Shi Y, Zhang N, de Poot SA, Tuebing F, Sun S, Vannoy J, Tarasov SG, Engen JR, Finley D, Walters KJ (2016) Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science 351(6275):aad9421. https://doi.org/10.1126/science.aad9421

    Article  CAS  PubMed  Google Scholar 

  8. Park S, Roelofs J, Kim W, Robert J, Schmidt M, Gygi SP, Finley D (2009) Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature 459(7248):866–870. https://doi.org/10.1038/nature08065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roelofs J, Park S, Haas W, Tian G, McAllister FE, Huo Y, Lee BH, Zhang F, Shi Y, Gygi SP, Finley D (2009) Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 459(7248):861–865. https://doi.org/10.1038/nature08063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Saeki Y, Toh EA, Kudo T, Kawamura H, Tanaka K (2009) Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 137(5):900–913. https://doi.org/10.1016/j.cell.2009.05.005

    Article  CAS  PubMed  Google Scholar 

  11. Funakoshi M, Tomko RJ Jr, Kobayashi H, Hochstrasser M (2009) Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 137(5):887–899. https://doi.org/10.1016/j.cell.2009.04.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bedford L, Paine S, Sheppard PW, Mayer RJ, Roelofs J (2010) Assembly, structure, and function of the 26S proteasome. Trends Cell Biol 20(7):391–401. https://doi.org/10.1016/j.tcb.2010.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tomko RJ Jr, Hochstrasser M (2013) Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem 82:415–445. https://doi.org/10.1146/annurev-biochem-060410-150257

    Article  CAS  PubMed  Google Scholar 

  14. Higashitsuji H, Liu Y, Mayer RJ, Fujita J (2005) The oncoprotein gankyrin negatively regulates both p53 and RB by enhancing proteasomal degradation. Cell Cycle 4(10):1335–1337. https://doi.org/10.4161/cc.4.10.2107

    Article  CAS  PubMed  Google Scholar 

  15. Tomko RJ Jr, Funakoshi M, Schneider K, Wang J, Hochstrasser M (2010) Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol Cell 38(3):393–403. https://doi.org/10.1016/j.molcel.2010.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kusmierczyk AR, Kunjappu MJ, Funakoshi M, Hochstrasser M (2008) A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat Struct Mol Biol 15(3):237–244. https://doi.org/10.1038/nsmb.1389

    Article  CAS  PubMed  Google Scholar 

  17. Tomko RJ Jr, Taylor DW, Chen ZA, Wang HW, Rappsilber J, Hochstrasser M (2015) A single alpha helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly. Cell 163(2):432–444. https://doi.org/10.1016/j.cell.2015.09.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Estrin E, Lopez-Blanco JR, Chacon P, Martin A (2013) Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid. Structure 21(9):1624–1635. https://doi.org/10.1016/j.str.2013.06.023

    Article  CAS  PubMed  Google Scholar 

  19. Kaneko T, Murata S (2012) Using siRNA techniques to dissect proteasome assembly pathways in mammalian cells. Methods Mol Biol 832:433–442. https://doi.org/10.1007/978-1-61779-474-2_30

    Article  CAS  PubMed  Google Scholar 

  20. Tallec BL, Peyroche A (2012) Using DNA damage sensitivity phenotypes to characterize mutations affecting proteasome function. Methods Mol Biol 832:363–371. https://doi.org/10.1007/978-1-61779-474-2_25

    Article  CAS  PubMed  Google Scholar 

  21. Barrault MB, Richet N, Godard C, Murciano B, Le Tallec B, Rousseau E, Legrand P, Charbonnier JB, Le Du MH, Guerois R, Ochsenbein F, Peyroche A (2012) Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly. Proc Natl Acad Sci U S A 109(17):E1001–E1010. https://doi.org/10.1073/pnas.1116538109

    Article  PubMed  PubMed Central  Google Scholar 

  22. Leggett DS, Glickman MH, Finley D (2005) Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast. Methods Mol Biol 301:57–70. https://doi.org/10.1385/1-59259-895-1:057

    Article  CAS  PubMed  Google Scholar 

  23. Park S, Li X, Kim HM, Singh CR, Tian G, Hoyt MA, Lovell S, Battaile KP, Zolkiewski M, Coffino P, Roelofs J, Cheng Y, Finley D (2013) Reconfiguration of the proteasome during chaperone-mediated assembly. Nature 497(7450):512–516. https://doi.org/10.1038/nature12123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Le Tallec B, Barrault MB, Guerois R, Carre T, Peyroche A (2009) Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome. Mol Cell 33(3):389–399. https://doi.org/10.1016/j.molcel.2009.01.010

    Article  CAS  PubMed  Google Scholar 

  25. Li F, Tian G, Langager D, Sokolova V, Finley D, Park S (2017) Nucleotide-dependent switch in proteasome assembly mediated by the Nas6 chaperone. Proc Natl Acad Sci U S A 114(7):1548–1553. https://doi.org/10.1073/pnas.1612922114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Verdoes M, Florea BI, Menendez-Benito V, Maynard CJ, Witte MD, van der Linden WA, van den Nieuwendijk AM, Hofmann T, Berkers CR, van Leeuwen FW, Groothuis TA, Leeuwenburgh MA, Ovaa H, Neefjes JJ, Filippov DV, van der Marel GA, Dantuma NP, Overkleeft HS (2006) A fluorescent broad-spectrum proteasome inhibitor for labeling proteasomes in vitro and in vivo. Chem Biol 13(11):1217–1226. https://doi.org/10.1016/j.chembiol.2006.09.013

    Article  CAS  PubMed  Google Scholar 

  27. Waite KA, De-La Mota-Peynado A, Vontz G, Roelofs J (2016) Starvation induces proteasome autophagy with different pathways for core and regulatory particles. J Biol Chem 291(7):3239–3253. https://doi.org/10.1074/jbc.M115.699124

    Article  CAS  PubMed  Google Scholar 

  28. Enenkel C (2012) Using native gel electrophoresis and phosphofluoroimaging to analyze GFP-tagged proteasomes. Methods Mol Biol 832:339–348. https://doi.org/10.1007/978-1-61779-474-2_23

    Article  CAS  PubMed  Google Scholar 

  29. Lee SY, De la Mota-Peynado A, Roelofs J (2011) Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein. J Biol Chem 286(42):36641–36651. https://doi.org/10.1074/jbc.M111.280875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De La Mota-Peynado A, Lee SY, Pierce BM, Wani P, Singh CR, Roelofs J (2013) The proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome. J Biol Chem 288(41):29467–29481. https://doi.org/10.1074/jbc.M113.491662

    Article  CAS  Google Scholar 

  31. Kleijnen MF, Roelofs J, Park S, Hathaway NA, Glickman M, King RW, Finley D (2007) Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat Struct Mol Biol 14(12):1180–1188. https://doi.org/10.1038/nsmb1335

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Tomko RJ Jr, Hochstrasser M (2015) Proteasomes: Isolation and activity assays. Curr Protoc Cell Biol 67:3.43. 1–3.43.20. https://doi.org/10.1002/0471143030.cb0343s67

    Article  Google Scholar 

  33. Hochstrasser M, Funakoshi M (2012) Disulfide engineering to map subunit interactions in the proteasome and other macromolecular complexes. Methods Mol Biol 832:349–362. https://doi.org/10.1007/978-1-61779-474-2_24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Many of these techniques described above have been developed or optimized and tweaked by many experts in the field, and the power of their use has been displayed in numerous excellent papers. We apologize for not being able to provide a comprehensive reference to all those contributions in this publication. This work was supported in part by grants to J.R. from NIH (R01-GM118660 and R15-GM112142).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeroen Roelofs or Soyeon Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Roelofs, J., Suppahia, A., Waite, K.A., Park, S. (2018). Native Gel Approaches in Studying Proteasome Assembly and Chaperones. In: Mayor, T., Kleiger, G. (eds) The Ubiquitin Proteasome System. Methods in Molecular Biology, vol 1844. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8706-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8706-1_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8705-4

  • Online ISBN: 978-1-4939-8706-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics