Skip to main content

Detection of SUN1 Splicing Variants at the mRNA and Protein Levels in Cancer

  • Protocol
  • First Online:
The LINC Complex

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1840))

Abstract

The linker of nucleoskeleton and cytoskeleton (LINC) complex, containing the proteins SUN and nesprin, is the fundamental structural unit of the nuclear envelope. The neoplastic-based regulation of the LINC complex in cancer tissues has become increasingly recognized in recent years, including the altered expression, somatic mutation, and methylation of genes. However, precisely how mutations and deregulated expression of the LINC complex contribute to the pathogenic mechanisms of tumorigenesis remain to be elucidated, mainly because of several technical difficulties. First, both the SUN and SYNE (encoding nesprin) genes give rise to a vast number of splicing variants. Second, immunoprecipitation experiments of endogenous SUN and nesprin proteins are difficult owing to the lack of suitable reagents as well as the limited solubility of these proteins in mild extraction conditions. Here, we describe three protocols to investigate these aspects: (1) immunohistochemistry to determine the expression levels and localization of the LINC complex in cancer tissue, (2) detection of SUN1 splicing variants at the mRNA level, and (3) detection of SUN1 splicing variants and binding partners at the protein level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischer AH, Bardarov S Jr, Jiang Z (2004) Molecular aspects of diagnostic nucleolar and nuclear envelope changes in prostate cancer. J Cell Biochem 91:170–184

    Article  CAS  PubMed  Google Scholar 

  2. Zink D, Fischer AH, Nickerson JA (2004) Nuclear structure in cancer cells. Nat Rev Cancer 4:677–687

    Article  CAS  PubMed  Google Scholar 

  3. de Las Heras JI, Schirmer EC (2014) The nuclear envelope and cancer: a diagnostic perspective and historical overview. Adv Exp Med Biol 773:5–26

    Article  PubMed  Google Scholar 

  4. Jevtić P, Levy DL (2014) Mechanisms of nuclear size regulation in model systems and cancer. Adv Exp Med Biol 773:537–569

    Article  PubMed  Google Scholar 

  5. Fischer AH (2014) The diagnostic pathology of the nuclear envelope in human cancers. Adv Exp Med Biol 773:49–75

    Article  CAS  PubMed  Google Scholar 

  6. Bell ES, Lammerding J (2016) Causes and consequences of nuclear envelope alterations in tumour progression. Eur J Cell Biol 95:449–464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Crisp M, Liu Q, Roux K, Rattner JB et al (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 172:41–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hodzic DM, Yeater DB, Bengtsson L et al (2004) Sun2 is a novel mammalian inner nuclear membrane protein. J Biol Chem 279:25805–25812

    Article  CAS  PubMed  Google Scholar 

  9. Shao X, Tarnasky HA, Lee JP et al (1999) Spag4, a novel sperm protein, binds outer dense-fiber protein Odf1 and localizes to microtubules of manchette and axoneme. Dev Biol 211:109–123

    Article  CAS  PubMed  Google Scholar 

  10. Frohnert C, Schweizer S, Hoyer-Fender S (2011) SPAG4L/SPAG4L-2 are testis-specific SUN domain proteins restricted to the apical nuclear envelope of round spermatids facing the acrosome. Mol Hum Reprod 17:207–218

    Article  CAS  PubMed  Google Scholar 

  11. Jiang XZ, Yang MG, Huang LH et al (2011) SPAG4L, a novel nuclear envelope protein involved in the meiotic stage of spermatogenesis. DNA Cell Biol 30:875–882

    Article  CAS  PubMed  Google Scholar 

  12. Rajgor D, Shanahan CM (2013) Nesprins: from the nuclear envelope and beyond. Expert Rev Mol Med 15:e5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Roux KJ, Crisp ML, Liu Q et al (2009) Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proc Natl Acad Sci U S A 106:2194–2199

    Article  PubMed Central  PubMed  Google Scholar 

  14. Gundersen GG, Worman HJ (2013) Nuclear positioning. Cell 152:1376–1389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Zhang X, Lei K, Yuan X et al (2017) SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 2009(64):173–187

    Google Scholar 

  16. Lei K, Zhu X, Xu R et al (2012) Inner nuclear envelope proteins SUN1 and SUN2 play a prominent role in the DNA damage response. Curr Biol 22:1609–1615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lawrence KS, Tapley EC, Cruz VE et al (2016) LINC complexes promote homologous recombination in part through inhibition of nonhomologous end joining. J Cell Biol 215:801–821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Luxton GW, Gomes ER, Folker ES et al (2010) Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329:956–959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Luxton GW, Gomes ER, Folker ES et al (2011) TAN lines: a novel nuclear envelope structure involved in nuclear positioning. Nucleus 2:173–181

    Article  PubMed Central  PubMed  Google Scholar 

  20. Chang W, Antoku S, Östlund C et al (2015) Linker of nucleoskeleton and cytoskeleton (LINC) complex-mediated actin-dependent nuclear positioning orients centrosomes in migrating myoblasts. Nucleus 6:77–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Nishioka Y, Imaizumi H, Imada J et al (2016) SUN1 splice variants, SUN1_888, SUN1_785, and predominant SUN1_916, variably function in directional cell migration. Nucleus 7:572–584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hiraoka Y, Dernburg AF (2009) The SUN rises on meiotic chromosome dynamics. Dev Cell 17:598–605

    Article  CAS  PubMed  Google Scholar 

  23. Adam SA (2017) The nucleoskeleton. Cold Spring Harb Perspect Biol 9. pii a023556

    Google Scholar 

  24. Hsieh TH, Chien CL, Lee YH et al (2014) Downregulation of SUN2, a novel tumor suppressor, mediates miR-221/222-induced malignancy in central nervous system embryonal tumors. Carcinogenesis 35:2164–2174

    Article  CAS  PubMed  Google Scholar 

  25. Lv XB, Liu L, Cheng C et al (2015) SUN2 exerts tumor suppressor functions by suppressing the Warburg effect in lung cancer. Sci Rep 5:17940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Matsumoto A, Hieda M, Yokoyama Y et al (2015) Global loss of a nuclear lamina component, lamin A/C, and LINC complex components SUN1, SUN2, and nesprin-2 in breast cancer. Cancer Med 4:1547–1557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Matsumoto A, Sakamoto C, Matsumori H et al (2016) Loss of the integral nuclear envelope protein SUN1 induces alteration of nucleoli. Nucleus 7:68–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kennedy C, Sebire K, de Kretser DM et al (2004) Human sperm associated antigen 4 (SPAG4) is a potential cancer marker. Cell Tissue Res 315:279–283

    Article  CAS  PubMed  Google Scholar 

  29. Shoji K, Murayama T, Mimura I et al (2013) Sperm-associated antigen 4, a novel hypoxia-inducible factor 1 target, regulates cytokinesis, and its expression correlates with the prognosis of renal cell carcinoma. Am J Pathol 182:2191–2203

    Article  CAS  PubMed  Google Scholar 

  30. Knaup KX, Monti J, Hackenbeck T et al (2014) Hypoxia regulates the sperm associated antigen 4 (SPAG4) via HIF, which is expressed in renal clear cell carcinoma and promotes migration and invasion in vitro. Mol Carcinog 53:970–978

    PubMed  CAS  Google Scholar 

  31. Rajgor D, Mellad JA, Autore F et al (2012) Multiple novel nesprin-1 and nesprin-2 variants act as versatile tissue-specific intracellular scaffolds. PLoS One 7:e40098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Doherty JA, Rossing MA, Cushing-Haugen KL et al (2010) SR1/SYNE1 polymorphism and invasive epithelial ovarian cancer risk: an Ovarian Cancer Association Consortium study. Cancer Epidemiol Biomark Prev 19:245–250

    Article  CAS  Google Scholar 

  33. Sjöblom T, Jones S, Wood LD et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    Article  CAS  PubMed  Google Scholar 

  34. Tessema M, Willink R, Do K et al (2008) Promoter methylation of genes in and around the candidate lung cancer susceptibility locus 6q23-25. Cancer Res 68:1707–1714

    Article  CAS  PubMed  Google Scholar 

  35. Schuebel KE, Chen W, Cope L et al (2007) Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet 3:1709–1723

    Article  CAS  PubMed  Google Scholar 

  36. Marmé A, Zimmermann HP, Moldenhauer G et al (2008) Loss of Drop1 expression already at early tumor stages in a wide range of human carcinomas. Int J Cancer 123:2048–2056

    Article  CAS  PubMed  Google Scholar 

  37. Schoppmann SF, Vinatzer U, Popitsch N et al (2013) Novel clinically relevant genes in gastrointestinal stromal tumors identified by exome sequencing. Clin Cancer Res 19:5329–5339

    Article  CAS  PubMed  Google Scholar 

  38. Warren DT, Tajsic T, Mellad JA et al (2010) Novel nuclear nesprin-2 variants tether active extracellular signal-regulated MAPK1 and MAPK2 at promyelocytic leukemia protein nuclear bodies and act to regulate smooth muscle cell proliferation. J Biol Chem 285:1311–1320

    Article  CAS  PubMed  Google Scholar 

  39. Vinayagam A, Stelzl U, Foulle R et al (2011) A directed protein interaction network for investigating intracellular signal transduction. Sci Signal 4(189):rs8

    Article  CAS  PubMed  Google Scholar 

  40. Autore F, Shanahan CM, Zhang Q (2016) Identification and validation of putative nesprin variants. Methods Mol Biol 1411:211–220

    Article  CAS  PubMed  Google Scholar 

  41. Holt I, Duong NT, Zhang Q et al (2016) Specific localization of nesprin-1-α2, the short isoform of nesprin-1 with a KASH domain, in developing, fetal and regenerating muscle, using a new monoclonal antibody. BMC Cell Biol 17:26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Göb E, Meyer-Natus E, Benavente R et al (2011) Expression of individual mammalian Sun1 isoforms depends on the cell type. Commun Integr Biol 4:440–442

    Article  PubMed Central  PubMed  Google Scholar 

  43. Razafsky D, Wirtz D, Hodzic D (2014) Nuclear envelope in nuclear positioning and cell migration. Adv Exp Med Biol 773:471–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Ms Yu Nishioka and Ms Junko Imada for technical assistance. This work is supported by the Education and Research Grant Program of Ehime Prefectural University of Health Science to MH.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Matsumoto, A., Matsuura, N., Hieda, M. (2018). Detection of SUN1 Splicing Variants at the mRNA and Protein Levels in Cancer. In: Gundersen, G., Worman, H. (eds) The LINC Complex. Methods in Molecular Biology, vol 1840. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8691-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8691-0_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8690-3

  • Online ISBN: 978-1-4939-8691-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics