Skip to main content

Synthetic Biology to Improve the Production of Lipases and Esterases (Review)

  • Protocol
  • First Online:
Lipases and Phospholipases

Abstract

Synthetic biology is an emergent field of research whose aim is to make biology an engineering discipline, thus permitting to design, control, and standardize biological processes. Synthetic biology is therefore expected to boost the development of biotechnological processes such as protein production and enzyme engineering, which can be significantly relevant for lipases and esterases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chahinian H, Sarda L (2009) Distinction between esterases and lipases: comparative biochemical properties of sequence-related carboxylesterases. Protein Pept Lett 16:1149–1161

    Article  CAS  PubMed  Google Scholar 

  2. de Regil R, Sandoval G (2013) Biocatalysis for biobased chemicals. Biomol Ther 3:812–847. https://doi.org/10.3390/biom3040812

    Article  CAS  Google Scholar 

  3. Nielsen J, Keasling JD (2016) Engineering cellular metabolism. Cell 164:1185–1197

    Article  CAS  PubMed  Google Scholar 

  4. Ng CY, Khodayari A, Chowdhury A, Maranas CD (2015) Advances in de novo strain design using integrated systems and synthetic biology tools. Curr Opin Chem Biol 28:105–114. Elsevier Ltd. https://doi.org/10.1016/j.cbpa.2015.06.026

    Article  PubMed  CAS  Google Scholar 

  5. Suplatov D, Voevodin V, Švedas V (2015) Robust enzyme design: bioinformatic tools for improved protein stability. Biotechnol J 10:344–355

    Article  CAS  PubMed  Google Scholar 

  6. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248. Nature Publishing Group. https://doi.org/10.1038/nbt.1614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Liu L, Agren R, Bordel S, Nielsen J (2010) Use of genome-scale metabolic models for understanding microbial physiology. FEBS Lett 584(12):2556–2564 http://www.sciencedirect.com/science/article/pii/S0014579310003376, [cited 2016 Mar 16]

    Article  CAS  PubMed  Google Scholar 

  8. Chandrasekaran S, Price ND (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107(41):17845–17850 http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=20876091&retmode=ref&cmd=prlinks

    Article  PubMed Central  PubMed  Google Scholar 

  9. Imam S, Schäuble S, Brooks AN, Baliga NS, Price ND (2015) Data-driven integration of genome-scale regulatory and metabolic network models. Front Microbiol 6:409 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4419725&tool=pmcentrez&rendertype=abstract, [cited 2016 Mar 21]

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kim B, Won ·, Kim J, In D, Sang K, Lee Y. Applications of genome-scale metabolic network model in metabolic engineering. J Ind Microbiol Biotechnol 2015;42:339–348

    Article  CAS  PubMed  Google Scholar 

  11. Price ND, Simeonidis E (2015) Genome-scale modeling for metabolic engineering. J Ind Microbiol Biotechnol 42(3):327–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kelwick R, MacDonald JT, Webb AJ, Freemont P (2014) Developments in the tools and methodologies of synthetic biology. Front Bioeng Biotechnol 2(November):60 http://journal.frontiersin.org/article/10.3389/fbioe.2014.00060/abstract

    PubMed  PubMed Central  Google Scholar 

  13. Redden H, Morse N, Alper HS (2015) The synthetic biology toolbox for tuning gene expression in yeast. FEMS Yeast Res 15(1):1–12

    Article  CAS  PubMed  Google Scholar 

  14. Tyo KEJ, Ajikumar PK, Stephanopoulos G (2009) Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol 27:760–765. https://doi.org/10.1038/nbt.1555

    Article  PubMed  CAS  Google Scholar 

  15. Jensen PR, Hammer K (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64:82–87

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to precisely control protein expression. Nat Biotechnol 27:946–950. https://doi.org/10.1038/nbt.1568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Smolke CD, Carrier TA, Keasling JD (2000) Coordinated, differential expression of two genes through directed mRNA cleavage and stabilization by secondary structures. Appl Environ Microbiol 66:5399–5405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. MacDonald IC, Deans TL (2016) Tools and applications in synthetic biology. Adv Drug Deliv Rev 105:20–34. https://doi.org/10.1016/j.addr.2016.08.008

    Article  PubMed  CAS  Google Scholar 

  19. Gustafsson C, Minshull J, Govindarajan S, Ness J, Villalobos A, Welch M (2012) Engineering genes for predictable protein expression. Protein Expr Purif 83:37–46. https://doi.org/10.1016/j.pep.2012.02.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Knight T (2003) Idempotent vector design for standard assembly of biobricks MIT Artificial Intelligence Laboratory; MIT Synthetic Biology Working Group http://hdl.handle.net/1721.1/21168

  21. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647. https://doi.org/10.1371/journal.pone.0003647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Celińska E, Ledesma-Amaro R, Larroude M, Rossignol T, Pauthenier C, Nicaud J-M (2017) Golden gate assembly system dedicated to complex pathway manipulation in Yarrowia lipolytica. Microb Biotechnol 10:450. https://doi.org/10.1111/1751-7915.12605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on Type IIs restriction enzymes. PLoS One 4:e5553. https://doi.org/10.1371/journal.pone.0005553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Daniela Q, Maximilian CCJCE, Paul FM, Joelle N (2017) Enzyme engineering: a synthetic biology approach for more effective library generation and automated high-throughput screening. PLoS One 12(2):e0171741

    Article  CAS  Google Scholar 

  25. Gibson DG (2009) Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 37:6984–6990. https://doi.org/10.1093/nar/gkp687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4:251–256. https://doi.org/10.1038/nmeth1010

    Article  PubMed  CAS  Google Scholar 

  27. Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One 4:e6441. https://doi.org/10.1371/journal.pone.0006441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zhang Y, Werling U, Edelmann W (2012) SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res 40:e55. https://doi.org/10.1093/nar/gkr1288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhang Y, Buchholz F, Muyrers JP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128. https://doi.org/10.1038/2417

    Article  PubMed  CAS  Google Scholar 

  30. Court DL, Sawitzke JA, Thomason LC (2002) Genetic engineering using homologous recombination. Annu Rev Genet 36:361–388. https://doi.org/10.1146/annurev.genet.36.061102.093104

    Article  PubMed  CAS  Google Scholar 

  31. Enyeart PJ, Chirieleison SM, Dao MN, Perutka J, Quandt EM, Yao J, Whitt JT, Keatinge-Clay AT, Lambowitz AM, Ellington AD (2013) Generalized bacterial genome editing using mobile group II introns and Cre-lox. Mol Syst Biol 9:685. https://doi.org/10.1038/msb.2013.41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Karberg M, Guo H, Zhong J, Coon R, Perutka J, Lambowitz AM (2001) Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nat Biotechnol 19:1162–1167. https://doi.org/10.1038/nbt1201-1162

    Article  PubMed  CAS  Google Scholar 

  33. Mizuuchi M, Mizuuchi K (1980) Integrative recombination of bacteriophage lambda: extent of the DNA sequence involved in attachment site function. Proc Natl Acad Sci U S A 77:3220–3224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sternberg N, Hamilton D, Hoess R (1981) Bacteriophage P1 site-specific recombination. II. Recombination between loxP and the bacterial chromosome. J Mol Biol 150:487–507

    Article  CAS  PubMed  Google Scholar 

  35. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963. https://doi.org/10.1038/nmeth.2649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355. https://doi.org/10.1038/nbt.2842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405. https://doi.org/10.1016/j.tibtech.2013.04.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Yuan D, Wu Z, Wang Y (2016) Evolution of the diacylglycerol lipases. Prog Lipid Res 64:85–97

    Article  CAS  PubMed  Google Scholar 

  40. Zorn K, Oroz-Guinea I, Brundiek H, Bornscheuer UT (2016) Engineering and application of enzymes for lipid modification, an update. Prog Lipid Res 63:153–164

    Article  CAS  PubMed  Google Scholar 

  41. Yu XW, Xu Y, Xiao R (2016) Lipases from the genus Rhizopus: characteristics, expression, protein engineering and application. Prog Lipid Res 64:57–68

    Article  CAS  PubMed  Google Scholar 

  42. Cobb RE, Sun N, Zhao H (2013) Directed evolution as a powerful synthetic biology tool. Methods 60:81–90. https://doi.org/10.1016/j.ymeth.2012.03.009

    Article  PubMed  CAS  Google Scholar 

  43. Currin A, Swainston N, Day PJ, Kell DB (2015) Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 44:1172–1239. https://doi.org/10.1039/C4CS00351A

    Article  PubMed  CAS  Google Scholar 

  44. Christopher KP, Leanne JGC, Melissa N, Paul DA (2015) Analytics for metabolic engineering. Front Bioeng Biotechnol 3(135):1–11

    Google Scholar 

  45. Dietrich JA, Mckee AE, Keasling JD (2010) High-throughput metabolic engineering: advances in small-molecule screening and selection. Annu Rev Biochem 79:563–590

    Article  CAS  PubMed  Google Scholar 

  46. Van Rossum T, Kengen SW, Van Der Oost J (2013) Reporter-based screening and selection of enzymes. FEBS J 280:2979–2996

    Article  CAS  PubMed  Google Scholar 

  47. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40:2004–2021

    Article  CAS  PubMed  Google Scholar 

  48. Stephanopoulos N, Francis MB (2011) Choosing an effective protein bio-conjugation strategy. Nat Chem Biol 7:876–884

    Article  CAS  PubMed  Google Scholar 

  49. Scheel M, Lutke-Eversloh T (2013) New options to engineer biofuel microbes: development and application of a high-throughput screening system. Metab Eng 17:51–58

    Article  CAS  PubMed  Google Scholar 

  50. Duetz WA, Witholt B (2004) Oxygen transfer by orbital shaking of square vessels and deepwell microtiter plates of various dimensions. Biochem Eng J 17:181–185

    Article  CAS  Google Scholar 

  51. Buchenauer A, Hofmann MC, Funke M, Buchs J, Mokwaa W, Schnakenberg U (2009) Micro-bioreactors for fed-batch fermentations with integrated online monitoring and microfluidic devices. Biosens Bioelectron 24:1411–1416

    Article  CAS  PubMed  Google Scholar 

  52. Puskeiler R, Kaufmann K, Weuster-Botz D (2005) Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD). Biotechnol Bioeng 89(5):512–523

    Article  CAS  PubMed  Google Scholar 

  53. Quan L, Xiuxia L, Yankun Y, Lu L, Linda H, Brian M, Zhonghu B (2014) The development and application of high throughput cultivation technology in bioprocess development. J Biotechnol 192(B:323–338

    Google Scholar 

  54. Stephen RH, Tauseef RB, Scott B, Steven BR, Philip F (2011) Design and construction of a first-generation high-throughput integrated robotic molecular biology platform for bioenergy applications. J Lab Autom 16(4):292–307

    Article  CAS  Google Scholar 

  55. Kizer L, Pitera DJ, Pfleger BF, Keasling JD (2008) Application of functional genomics to pathway optimization for increased isoprenoid production. Appl Environ Microbiol 74:3229–3241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Smith AM, Heisler LE, Mellor J, Kaper F, Thompson MK, Chee M et al (2009) Quantitative phenotyping via deep barcode sequencing. Genome Res 19:1836–1842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Gowen CM, Fong SS (2010) Genome-scale metabolic model integrated with RNAseq data to identify metabolic states of Clostridium thermocellum. Biotechnol J 5:759–767

    Article  CAS  PubMed  Google Scholar 

  58. Picotti P, Bodenmiller B, Meuller LN, Domon B, Aebersold R (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138:795–806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Bajad SU, Lu W, Kimball EH, Yuan JK, Peterson C, Rabinowitz JD (2006) Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A 1125:76–88

    Article  CAS  PubMed  Google Scholar 

  60. Lu W, Bennet BD, Rabinowitz JD (2008) Analytical strategies for LC-MS-based targeted metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 871:236–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Liu Y, Singh AK (2013) Microfluidic platforms for single-cell protein analysis. J Lab Autom 18:446–454

    Article  CAS  PubMed  Google Scholar 

  62. Wang BL, Ghaderi A, Zhou H, Agresti J, Weitz DA, Fink GR et al (2014) Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat Biotechnol 32:473–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Beneyot T, Thomas S, Griffiths AD, Nicaud JM, Drevelle A, Rossignol T (2017) Droplet-based microfluidic high-throughput screening of heterologous enzymes secreted by the yeast Yarrowia lipolytica. Microb Cell Factories 16(1):18

    Article  CAS  Google Scholar 

  64. Abate AR, Hung T, Sperling RA, Mary P, Rotem A, Agresti JJ et al (2013) DNA sequence analysis with droplet-based microfluidics. Lab Chip 13:4864–4869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Lim SW, Abate AR (2013) Ultrahigh-throughput sorting of microfluidic drops with flow cytometry. Lab Chip 13:4563–4572

    Article  CAS  PubMed  Google Scholar 

  66. Basova EY, Foret F (2015) Droplet microfluidics in (bio)chemical analysis. Analyst 140:22–38

    Article  CAS  PubMed  Google Scholar 

  67. Saliba AE, Westermann AJ, Gorski SA, Vogel J (2014) Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42:8845–8860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Funke M, Buchenauer A, Mokwa W, Kluge S, Hein L, Muller C, Kensy F, Buchs J (2010) Bioprocess control in microscale: scalable fermentations in disposable and user-friendly microfluidic systems. Microb Cell Factories 9(1):86

    Article  CAS  Google Scholar 

  69. Funke M, Buchenauer A, Schnakenberg U, Mokwa W, Diederichs S, Mertens A, Muller C, Kensy F, Buchs J (2010) Microfluidic bioLector-microfluidic bioprocess control in microtiter plates. Biotechnol Bioeng 107:497–505

    Article  CAS  PubMed  Google Scholar 

  70. Kouker G, Jaeger KE (1987) Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53(1):211–213

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Lawrence RC, Fryer TF, Reiter B (1967) Rapid method for the quantitative estimation of microbial lipases. Nat Rev Drug Discov 213(5082):1264–1265

    CAS  Google Scholar 

  72. Schmidt M, Bornscheuer UT (2005) High-throughput assay for lipases and esterases. Biomol Eng 22(1–3):51–56

    Article  CAS  PubMed  Google Scholar 

  73. Fukushima A, Kusano M, Redestig H, Arita M, Saito K (2009) Integrated omics approaches in plant systems biology. Curr Opin Chem Biol 13:532–538

    Article  CAS  PubMed  Google Scholar 

  74. Fernandez C, Krogh M, Wårell C, Alm K, Oredsson S, Persson L, James P, Holm C (2009) Omics analyses reveal a potential link between hormone-sensitive lipase and polyamine metabolism. J Proteome Res 8:5008–5019

    Article  CAS  PubMed  Google Scholar 

  75. Li N, Li DD, Zhang YZ, Yuan YZ, Geng H, Xiong L, Liu DL (2016) Genome sequencing and systems biology analysis of a lipase-producing bacterial strain. Genet Mol Res 15:1–12

    Google Scholar 

  76. Meunchan M, Michely S, Devillers H, Nicaud JM, Marty A, Neuvéglise C (2015) Comprehensive analysis of a yeast lipase family in the Yarrowia Clade. PLoS One 10(11):1–22

    Article  CAS  Google Scholar 

  77. Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  CAS  PubMed  Google Scholar 

  78. Xing MN, Zhang XZ, Huang H (2012) Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis. Biotechnol Adv 30:920–929

    Article  CAS  PubMed  Google Scholar 

  79. Hu Y, Fu C, Huang Y, Yin Y, Cheng G, Lei F, Lu N, Li J, Ashforth EJ, Zhang L, Zhu B (2010) Novel lipolytic genes from the microbial metagenomic library of the South China Sea marine sediment. FEMS Microbiol Ecol 72:228–237

    Article  CAS  PubMed  Google Scholar 

  80. Lee MH, Hong KS, Malhotra S, Park JH, Hwang EC, Choi HK, Kim YS, Tao W, Lee SW (2010) A new esterase EstD2 isolated from plant rhizosphere soil metagenome. Appl Microbiol Biotechnol 88:1125–1134

    Article  CAS  PubMed  Google Scholar 

  81. Lee HW, Jung WK, Kim YH, Ryu BH, Kim TD, Kim J, Kim H (2016) Characterization of a novel alkaline family VIII esterase with S-enantiomer preference from a compost metagenomic library. J Microbiol Biotechnol 26:315–325

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Ledesma-Amaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gamboa-Melendez, H., Larroude, M., Park, Y.K., Trebul, P., Nicaud, JM., Ledesma-Amaro, R. (2018). Synthetic Biology to Improve the Production of Lipases and Esterases (Review). In: Sandoval, G. (eds) Lipases and Phospholipases. Methods in Molecular Biology, vol 1835. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8672-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8672-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8671-2

  • Online ISBN: 978-1-4939-8672-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics