Skip to main content

Serpins: Development for Therapeutic Applications

  • Protocol
  • First Online:
Serpins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1826))

Abstract

Serine protease inhibitors, or serpins, function as central regulators for many vital processes in the mammalian body, maintaining homeostasis for clot formation and breakdown, immune responses, lung function, and hormone or central nervous system activity, among many others. When serine protease activity or serpin-mediated regulation becomes unbalanced or dysfunctional, then severe disease states and pathogenesis can ensue. With serpinopathies, genetic mutations lead to inactive serpins or protein aggregation with loss of function. With other disorders, such as sepsis, atherosclerosis, cancer, obesity, and the metabolic syndrome, the thrombotic and thrombolytic cascades and/or inflammatory responses become unbalanced, with excess bleeding and clotting and upregulation of adverse immune responses. Returning overall balance can be engineered through introduction of a beneficial serpin replacement as a therapeutic or through blockade of serpins that are detrimental. Several drugs have been developed and are currently in use and/or in development both to replace dysfunctional serpins and to block adverse effects induced by aberrant protease or serpin actions.

With this chapter, we provide a general overview of the development of a virus-derived serpin, Serp-1, and serpin reactive center loop (RCL) peptides, as therapeutics. Serp-1 is a virus-derived serpin developed as a new class of immune modulator. We will use the development of Serp-1 as a general introduction to serpin-based drug development.

Serpins

pervasive in blood

and bone

and brain

Essential to life

and lungs

and flow

When lost

and broken

replace, repair

Life stems

from virus

to man

Alexandra Lucas, 2018

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Silverman GA, Bird PI, Carrell RW et al (2001) The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 276:33293–33296

    Article  CAS  PubMed  Google Scholar 

  2. Irving JA, Ekeowa UI, Belorgey D et al (2011) The serpinopathies studying serpin polymerization in vivo. Methods Enzymol 501:421–466

    Article  CAS  PubMed  Google Scholar 

  3. Hughes VA, Meklemburg R, Bottomley SP et al (2017) The Z mutation alters the global structural dynamics of α1-antitrypsin. PLoS One 9:e102617

    Article  CAS  Google Scholar 

  4. Gooptu B, Dickens JA, Lomas DA (2014) The molecular and cellular pathology of α1-antitrypsin deficiency. Trends Mol Med 20:116–127

    Article  CAS  PubMed  Google Scholar 

  5. Janciauskiene S, Welte T (2016) Well-known and less well-known functions of alpha-1 antitrypsin. Its role in chronic obstructive pulmonary disease and other disease developments. Ann Am Thorac Soc 13(Suppl 4):S280–S288

    Article  PubMed  Google Scholar 

  6. Zanichelli A, Wu MA, Andreoli A et al (2015) The safety of treatments for angioedema with hereditary C1 inhibitor deficiency. Expert Opin Drug Saf 14:1725–1736

    Article  CAS  PubMed  Google Scholar 

  7. Riedl M (2015) Recombinant human C1 esterase inhibitor in the management of hereditary angioedema. Clin Drug Investig 35:407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Campos MA, Lascano J (2014) α1 Antitrypsin deficiency: current best practice in testing and augmentation therapy. Ther Adv Respir Dis 8:150–161

    Article  CAS  PubMed  Google Scholar 

  9. Gao W, Zhao J, Kim H et al (2014) α1-Antitrypsin inhibits ischemia reperfusion-induced lung injury by reducing inflammatory response and cell death. J Heart Lung Transplant 33:309–315

    Article  PubMed  Google Scholar 

  10. Dickens JA, Lomas DA (2011) Why has it been so difficult to prove the efficacy of alpha-1-antitrypsin replacement therapy? Insights from the study of disease pathogenesis. Drug Des Devel Ther 5:391–405

    PubMed  PubMed Central  Google Scholar 

  11. Alcantara MB, Dass CR (2014) Pigment epithelium-derived factor as a natural matrix metalloproteinase inhibitor: a comparison with classical matrix metalloproteinase inhibitors used for cancer treatment. J Pharm Pharmacol 66:895–902

    Article  CAS  PubMed  Google Scholar 

  12. Samad F, Ruf W (2013) Inflammation, obesity, and thrombosis. Blood 122:3415–3422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuiper J, Quax PH, Bot I (2013) Anti-apoptotic serpins as therapeutics in cardiovascular diseases. Cardiovasc Hematol Disord Drug Targets 13:111–122

    Article  CAS  PubMed  Google Scholar 

  14. Wewers MD, Crystal RG (2013) Alpha-1 antitrypsin augmentation therapy. COPD 10(Suppl 1):64–67

    Article  PubMed  Google Scholar 

  15. Placencio VR, DeClerck YA (2015) Plasminogen Activator Inhibitor-1 in Cancer: Rationale and Insight for Future Therapeutic Testing. Cancer Res 75:2969–2974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heiker JT (2014) Vaspin (serpinA12) in obesity, insulin resistance, and inflammation. J Pept Sci 20:299–306

    Article  CAS  PubMed  Google Scholar 

  17. Chen H, Davids JA, Zheng D et al (2013) The serpin solution; targeting thrombotic and thrombolytic serine proteases in inflammation. Cardiovasc Hematol Disord Drug Targets 13:99–110

    Article  CAS  PubMed  Google Scholar 

  18. Hoffmann JN (2006) Benefit/risk profile of high-dose antithrombin in patients with severe sepsis treated with and without concomitant heparin. Thromb Haemost 95:850–856

    Article  CAS  PubMed  Google Scholar 

  19. Chang YP, Mahadeva R, Patschull AO et al (2011) Targeting serpins in high-throughput and structure-based drug design. Methods Enzymol 501:139–175

    Article  CAS  PubMed  Google Scholar 

  20. Ambadapadi S, Munuswamy-Ramanujam G, Zheng D et al (2015) Reactive center loop (RCL) peptides derived from serpins display independent coagulation and immune modulating activities. J Biol Chem 291:2874–2887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mahon BP, Ambadapadi S, Lomelino CL, et al (2018) Crystal structure of the serine protease inhibitor, Serp-1, from Myxomavirus: a basis for drug design. Biochemistry 57:1096–1107

    Google Scholar 

  22. Dimitrov DS (2012) Therapeutic proteins. Methods Mol Biol 899:1–26

    Article  CAS  PubMed  Google Scholar 

  23. Ridker PM, Lüscher TF (2014) Anti-inflammatory therapies for cardiovascular disease. Eur Heart J 35:1782–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Davids JA, Dai E, Chen H et al (2014) Viral anti-inflammatory proteins target diverging immune pathways with converging effects on arterial dilatation, plaque, and apoptosis. Eur J Inflamm 12:131–145

    Article  CAS  Google Scholar 

  25. Brahn E, Lee S, Lucas A et al (2014) Suppression of collagen-induced arthritis with a serine proteinase inhibitor derived from myxoma virus. Clin Immunol 153:254–263

    Article  CAS  PubMed  Google Scholar 

  26. Chen H, Abbott J, Zheng D et al (2013) Myxomavirus serpin modulates protease pathways and prolongs survival in lethal herpesviral infection. Antimicrob Agents Chemother 57:4114–4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zheng D, Chen H, Bartee MY et al (2013) Myxomaviral anti-inflammatory serpin reduces myeloid - derived suppressor cells and human pancreatic cancer cell growth in mice. J Cancer Sci Ther 5:291–299

    PubMed  PubMed Central  Google Scholar 

  28. Viswanathan K, Bot I, Liu L et al (2012) Viral cross-class serpin inhibits vascular inflammation and T lymphocyte fratricide; a study in rodent models in vivo and human cell lines in vitro. PLoS One 7:e44694 PONE-D-11-12856R3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Viswanathan K, Richardson J, Togonu-Bickersteth B et al (2009) Myxoma viral serpin, Serp-1, inhibits human monocyte activation through regulation of actin binding protein filamin B. J Leukoc Biol 85:418–426

    Article  CAS  PubMed  Google Scholar 

  30. Munuswamy-Ramanujam G, Dai E, Liu LY et al (2010) Serpins targeting thrombolytic proteases alter T helper lymphocyte sub population. Neuroserpin, a thrombolytic serine protease inhibitor (serpin), blocks transplant vasculopathy with associated potent anti-inflammatory and anti-atherogenic activity in mouse aortic allograft transplant models. Thromb Haemost 103:545–555

    Article  CAS  PubMed  Google Scholar 

  31. Tardif J-C, L’Allier P, Grégoire J et al (2010) A phase 2, double-blind, placebo-controlled trial of a viral serpin (Serine Protease Inhibitor), VT-111, in patients with acute coronary syndrome and stent implant. Circ Cardiovasc Interv 3:543–548

    Article  CAS  PubMed  Google Scholar 

  32. Bédard ELR, Jiang J, Arp J et al (2006) Prevention of chronic renal allograft rejection by SERP-1 protein. Transplantation 81:908–914

    Article  CAS  PubMed  Google Scholar 

  33. Dai E, Viswanathan K, Sun YM et al (2006) Identification of myxomaviral serpin reactive site loop sequences that regulate innate immune responses. J Biol Chem 281:8041–8050

    Article  CAS  PubMed  Google Scholar 

  34. Richardson M, Liu L, Dunphy L et al (2007) Viral serpin, Serp-1, inhibits endogenous angiogenesis in the chicken chorioallantoic membrane (CAM) model. Cardiovasc Pathol 16:191–202

    Article  CAS  PubMed  Google Scholar 

  35. Jiang J, Kubelik D, Zassoko R et al (2007) Prevention of innate immunity and induction of indefinite cardiac allograft survival by Serp-1 protein. Transplantation 84:1158–1167

    Article  CAS  PubMed  Google Scholar 

  36. Bot I, von der Thusen JH, Donners MM et al (2003) The serine protease inhibitor Serp-1 strongly impairs atherosclerotic lesion formation and induces a stable plaque phenotype in ApoE−/− mice. Circ Res 93:464–471

    Article  CAS  PubMed  Google Scholar 

  37. Lucas AR, Liu LY, Macen J et al (1996) Virus-encoded serine proteinase inhibitor, SERP-1, inhibits atherosclerotic plaque development after balloon angioplasty. Circulation 94:2890–2900

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Lucas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lucas, A., Yaron, J.R., Zhang, L., Macaulay, C., McFadden, G. (2018). Serpins: Development for Therapeutic Applications. In: Lucas, A. (eds) Serpins. Methods in Molecular Biology, vol 1826. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8645-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8645-3_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8644-6

  • Online ISBN: 978-1-4939-8645-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics