Skip to main content

Serpins in Venous Thrombosis and Venous Thrombus Resolution

  • Protocol
  • First Online:
Serpins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1826))

Abstract

Several serpins function as potent inhibitors of thrombolytic serine proteases. Venous thrombosis is a common and debilitating condition whose incidence is on the rise. Studies using genetically modified mice and inhibitors have shown that the plasminogen activator inhibitors (PAI), PAI-1 and PAI-2, are primary regulators of plasminogen activation and contribute to regulating the resolution of experimental venous thrombi, via inflammatory mechanisms, vascular remodeling, and inhibition of fibrinolysis. Therapies to accelerate venous thrombus resolution would be beneficial, since delayed or incomplete clot resolution frequently leads to postthrombotic syndrome, a long-term complication associated with debilitating limb swelling, pain, and recurrent skin ulceration. Here we describe a useful and reproducible mouse model for the study of venous thrombus resolution involving ligation of the inferior vena cava and elucidation of the molecular and cellular determinants of venous thrombus formation and resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deroo S, Deatrick KB, Henke PK (2010) The vessel wall: a forgotten player in post thrombotic syndrome. Thromb Haemost 104:681–692

    Article  CAS  PubMed  Google Scholar 

  2. Saha P, Humphries J, Modarai B et al (2011) Leukocytes and the natural history of deep vein thrombosis: current concepts and future directions. Arterioscler Thromb Vasc Biol 31:506–512

    Article  CAS  PubMed  Google Scholar 

  3. Ripplinger CM, Kessinger CW, Li C et al (2012) Inflammation modulates murine venous thrombosis resolution in vivo: assessment by multimodal fluorescence molecular imaging. Arterioscler Thromb Vasc Biol 32:2616–2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moll S, Mackman N (2008) Venous thromboembolism: a need for more public awareness and research into mechanisms. Arterioscler Thromb Vasc Biol 28:367–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Henke PK, Comerota AJ (2011) An update on etiology, prevention, and therapy of postthrombotic syndrome. J Vasc Surg 53:500–509

    Article  PubMed  Google Scholar 

  6. Henke PK, Pannucci CJ (2010) Venous thromboembolism risk factor assessment and prophylaxis. Phlebology 25:219–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meissner MH, Caps MT, Zierler BK et al (1998) Determinants of chronic venous disease after acute deep venous thrombosis. J Vasc Surg 28:826–833

    Article  CAS  PubMed  Google Scholar 

  8. Binder BR, Mihaly J, Prager GW (2007) uPAR-uPA-PAI-1 interactions and signaling: a vascular biologist's view. Thromb Haemost 97:336–342

    Article  CAS  PubMed  Google Scholar 

  9. Mondino A, Blasi F (2004) uPA and uPAR in fibrinolysis, immunity and pathology. Trends Immunol 25:450–455

    Article  CAS  PubMed  Google Scholar 

  10. Kruithof EK, Baker MS, Bunn CL (1995) Biological and clinical aspects of plasminogen activator inhibitor type 2. Blood 86:4007–4024

    PubMed  CAS  Google Scholar 

  11. Antalis TM, La Linn M, Donnan K et al (1998) The serine proteinase inhibitor (serpin) plasminogen activation inhibitor type 2 protects against viral cytopathic effects by constitutive interferon alpha/beta priming. J Exp Med 187:1799–1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dickinson JL, Bates EJ, Ferrante A et al (1995) Plasminogen activator inhibitor type 2 inhibits tumor necrosis factor alpha-induced apoptosis. Evidence for an alternate biological function. J Biol Chem 270:27894–27904

    Article  CAS  PubMed  Google Scholar 

  13. Schroder WA, Gardner J, Le TT et al (2010) SerpinB2 deficiency modulates Th1Th2 responses after schistosome infection. Parasite Immunol 32:764–768

    Article  CAS  PubMed  Google Scholar 

  14. Schroder WA, Le TT, Major L et al (2010) A physiological function of inflammation-associated SerpinB2 is regulation of adaptive immunity. J Immunol 184:2663–2670

    Article  CAS  PubMed  Google Scholar 

  15. Darnell GA, Schroder WA, Gardner J et al (2006) SerpinB2 is an inducible host factor involved in enhancing HIV-1 transcription and replication. J Biol Chem 281:31348–31358

    Article  CAS  PubMed  Google Scholar 

  16. Dougherty KM, Pearson JM, Yang AY et al (1999) The plasminogen activator inhibitor-2 gene is not required for normal murine development or survival. Proc Natl Acad Sci U S A 96:686–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Singh I, Burnand KG, Collins M et al (2003) Failure of thrombus to resolve in urokinase-type plasminogen activator gene-knockout mice: rescue by normal bone marrow-derived cells. Circulation 107:869–875

    Article  CAS  PubMed  Google Scholar 

  18. Northeast AD, Soo KS, Bobrow LG et al (1995) The tissue plasminogen activator and urokinase response in vivo during natural resolution of venous thrombus. J Vasc Surg 22:573–579

    Article  CAS  PubMed  Google Scholar 

  19. Gossage JA, Humphries J, Modarai B et al (2006) Adenoviral urokinase-type plasminogen activator (uPA) gene transfer enhances venous thrombus resolution. J Vasc Surg 44:1085–1090

    Article  PubMed  Google Scholar 

  20. Nilsson IM, Ljungner H, Tengborn L (1985) Two different mechanisms in patients with venous thrombosis and defective fibrinolysis: low concentration of plasminogen activator or increased concentration of plasminogen activator inhibitor. Br Med J (Clin Res Ed) 290:1453–1456

    Article  CAS  Google Scholar 

  21. Wakefield TW, Myers DD, Henke PK (2009) Role of selectins and fibrinolysis in VTE. Thromb Res 123(Suppl 4):S35–S40

    Article  CAS  PubMed  Google Scholar 

  22. Siefert SA, Chabasse C, Mukhopadhyay S et al (2014) Enhanced venous thrombus resolution in plasminogen activator inhibitor type-2 deficient mice. J Thromb Haemost 12:1706–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baldwin JF, Sood V, Elfline MA et al (2012) The role of urokinase plasminogen activator and plasmin activator inhibitor-1 on vein wall remodeling in experimental deep vein thrombosis. J Vasc Surg 56:1089–1097

    Article  PubMed  PubMed Central  Google Scholar 

  24. Obi AT, Diaz JA, Farris DM et al (2013) Vitronectin gene-deletion, PAI-1 gene-deletion, and LMWH treatment: effect on thrombus resolution and vein wall remodeling in a mouse model of DVT. J Vasc Surg Venous Lymphat Disord 1:103

    Article  CAS  PubMed  Google Scholar 

  25. Obi AT, Diaz JA, Ballard-Lipka NL et al (2014) Plasminogen activator-1 overexpression decreases experimental postthrombotic vein wall fibrosis by a non-vitronectin-dependent mechanism. J Thromb Haemost 12:1353–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gardiner EE, Medcalf RL (2014) Is plasminogen activator inhibitor type 2 really a plasminogen activator inhibitor after all? J Thromb Haemost 12:1703–1705

    Article  CAS  PubMed  Google Scholar 

  27. Mackman N (2012) New insights into the mechanisms of venous thrombosis. J Clin Invest 122:2331–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nguyen KP, McGilvray KC, Puttlitz CM et al (2015) Matrix metalloproteinase 9 (MMP-9) regulates vein wall biomechanics in murine thrombus resolution. PLoS One 10:e0139145

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chabasse C, Siefert SA, Chaudry M et al (2015) Recanalization and flow regulate venous thrombus resolution and matrix metalloproteinase expression in vivo. J Vasc Surg Venous Lymphat Disord 3:64–74

    Article  PubMed  Google Scholar 

  30. Gabre J, Chabasse C, Cao C et al (2014) Activated protein C accelerates venous thrombus resolution through heme oxygenase-1 induction. J Thromb Haemost 12:93–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Day SM, Reeve JL, Myers DD et al (2004) Murine thrombosis models. Thromb Haemost 92:486–494

    PubMed  CAS  Google Scholar 

  32. Diaz JA, Obi AT, Myers DD et al (2012) Critical review of mouse models of venous thrombosis. Arterioscler Thromb Vasc Biol 32:556–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mukhopadhyay S, Antalis TM, Nguyen KP et al (2017) Myeloid p53 regulates macrophage polarization and venous thrombus resolution by inflammatory vascular remodeling in mice. Blood 129:3245–3255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cogo A, Lensing AW, Prandoni P et al (1993) Distribution of thrombosis in patients with symptomatic deep vein thrombosis. Implications for simplifying the diagnostic process with compression ultrasound. Arch Intern Med 153:2777–2780

    Article  CAS  PubMed  Google Scholar 

  35. von Bruhl ML, Stark K, Steinhart A et al (2012) Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 209:819–835

    Article  CAS  Google Scholar 

  36. Brandt M, Schonfelder T, Schwenk M et al (2014) Deep vein thrombus formation induced by flow reduction in mice is determined by venous side branches. Clin Hemorheol Microcirc 56:145–152

    PubMed  Google Scholar 

  37. Brill A, Fuchs TA, Chauhan AK et al (2011) von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood 117:1400–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brill A, Yesilaltay A, De Meyer SF et al (2012) Extrahepatic high-density lipoprotein receptor SR-BI and apoA-I protect against deep vein thrombosis in mice. Arterioscler Thromb Vasc Biol 32:1841–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Henke PK, Mitsuya M, Luke CE et al (2011) Toll-like receptor 9 signaling is critical for early experimental deep vein thrombosis resolution. Arterioscler Thromb Vasc Biol 31:43–49

    Article  CAS  PubMed  Google Scholar 

  40. Nosaka M, Ishida Y, Kimura A et al (2011) Absence of IFN-gamma accelerates thrombus resolution through enhanced MMP-9 and VEGF expression in mice. J Clin Invest 121:2911–2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Geddings J, Aleman MM, Wolberg A et al (2014) Strengths and weaknesses of a new mouse model of thrombosis induced by inferior vena cava stenosis: communication from the SSC of the ISTH. J Thromb Haemost 12:571–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by award number 1I01BX001921 (TMA) from the Biomedical Laboratory Research & Development Service of the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, and by the National Institutes of Health T32 HL007698 (TAJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni M. Antalis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mukhopadhyay, S., Johnson, T.A., Sarkar, R., Antalis, T.M. (2018). Serpins in Venous Thrombosis and Venous Thrombus Resolution. In: Lucas, A. (eds) Serpins. Methods in Molecular Biology, vol 1826. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8645-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8645-3_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8644-6

  • Online ISBN: 978-1-4939-8645-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics