Skip to main content

Rational Drug Design Using Integrative Structural Biology

  • Protocol
  • First Online:
Rational Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1824))

Abstract

Modern drug discovery and design approaches rely heavily on high-throughput methods and state-of-the-art infrastructures with robotic facilities and sophisticated platforms. However, the anticipated research output that would eventually lead to new drugs with minimal or no side effects to the market has not been achieved. Despite the vast amount of information generated, very little is converted to knowledge and even less is capitalized for cross-discipline research actions. Therefore, the need for re-launching rational approaches has become apparent. Here we present an overview of the new trends in rational drug design using integrative structural biology with emphasis on X-ray protein crystallography and small molecules as ligands. With the aim to increase researchers’ awareness on the available possibilities to perform front line research, we also underline the benefits and enhanced prospects offered to the scientific community, through access to research infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three dimensional

DLS:

Dynamic light scattering

DMSO:

Dimethyl sulfoxide

EM:

Electron microscopy

HPLC:

High-performance liquid chromatography

HR-MS:

High-resolution mass spectrometry

MALLS:

Multi-angle laser light scattering

NMR:

Nuclear magnetic resonance

RI:

Research infrastructure

SAXS:

Small-angle X-ray scattering

SEC:

Size exclusion chromatography

SRS:

Synchrotron radiation source

References

  1. Berman HM (2008) The protein data bank: a historical perspective. Acta Crystallogr A 64(Pt 1):88–95. https://doi.org/10.1107/S0108767307035623

    Article  CAS  PubMed  Google Scholar 

  2. Scannell JW, Blanckley A, Boldon H et al (2012) Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov 11(3):191–200. https://doi.org/10.1038/nrd3681

    Article  CAS  PubMed  Google Scholar 

  3. Scannell JW, Bosley J (2016) When quality beats quantity: decision theory, drug discovery, and the reproducibility crisis. PLoS One 11(2):e0147215. https://doi.org/10.1371/journal.pone.0147215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Manglik A, Lin H, Aryal DK et al (2016) Structure-based discovery of opioid analgesics with reduced side effects. Nature 537(7619):185–190. https://doi.org/10.1038/nature19112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wacker D, Wang S, McCorvy JD et al (2017) Crystal structure of an LSD-bound human serotonin receptor. Cell 168(3):377–389.e12. https://doi.org/10.1016/j.cell.2016.12.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dormitzer PR, Grandi G, Rappuoli R (2012) Structural vaccinology starts to deliver. Nat Rev Microbiol 10(12):807–813. https://doi.org/10.1038/nrmicro2893

    Article  CAS  PubMed  Google Scholar 

  7. Gourlay L, Peri C, Bolognesi M et al (2017) Structure and computation in immunoreagent design: from diagnostics to vaccines. Trends Biotechnol 35(12):1208–1220. https://doi.org/10.1016/j.tibtech.2017.06.018

    Article  CAS  PubMed  Google Scholar 

  8. Khan FI, Lan D, Durrani R et al (2017) The lid domain in lipases: structural and functional determinant of enzymatic properties. Front Bioeng Biotechnol 5:1–13. https://doi.org/10.3389/fbioe.2017.00016

    Article  Google Scholar 

  9. Jensen MBV, Horsfall LE, Wardrope C et al (2016) Characterisation of a new family of carboxyl esterases with an OsmC domain. PLoS One 11(11):e0166128. https://doi.org/10.1371/journal.pone.0166128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Scholz J, Besir H, Strasser C et al (2013) A new method to customize protein expression vectors for fast, efficient and background free parallel cloning. BMC Biotechnol 13(1):12. https://doi.org/10.1186/1472-6750-13-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Owens RJ (ed) (2015) Structural proteomics: high-throughput methods. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4939-2230-7

    Book  Google Scholar 

  12. Singh A, Upadhyay V, Upadhyay AK et al (2015) Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Factories 14:2–10. https://doi.org/10.1186/s12934-015-0222-8

    Article  CAS  Google Scholar 

  13. Malissard M, Berger EG (2001) Improving solubility of catalytic domain of human beta-1,4-galactosyltransferase 1 through rationally designed amino acid replacements. Eur J Biochem 268(15):4352–4358. https://doi.org/10.1046/j.1432-1327.2001.02357.x

    Article  CAS  PubMed  Google Scholar 

  14. Janson J-C (ed) (2011) Protein purification: principles, high resolution methods and applications. Wiley, Hoboken. https://doi.org/10.1002/9780470939932

    Book  Google Scholar 

  15. Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker J (ed) The proteomics protocols handbook. Humana Press, Totowa, NJ

    Google Scholar 

  16. Gupta R, Brunak S (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput 7:310–322

    Google Scholar 

  17. Steentoft C, Vakhrushev SY, Joshi HJ et al (2013) Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 32(10):1478–1488. https://doi.org/10.1038/emboj.2013.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kimple ME, Brill AL, Pasker RL (2015) Overview of affinity tags for protein purification. Curr Protoc Protein Sci Unit-9.9:1–26. https://doi.org/10.1002/0471140864.ps0909s73

    Article  Google Scholar 

  19. Sahin E, Roberts CJ (2012) Size-exclusion chromatography with multi-angle light scattering for elucidating protein aggregation mechanisms. In: Voynov V, Caravella J (eds) Therapeutic proteins. Methods in molecular biology (methods and protocols), vol 899. Humana Press, Totowa, NJ

    Google Scholar 

  20. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876–2890. https://doi.org/10.1038/nprot.2006.202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Macchi P (2011) Cryo-crystallography: diffraction at low temperature and more. In: Rissanen K (ed) Advanced X-ray crystallography. Topics in current chemistry, vol 315. Springer, Berlin, Heidelberg

    Google Scholar 

  22. Krojer T, Pike ACW, Von Delft F (2013) Squeezing the most from every crystal: the fine details of data collection. Acta Crystallogr Sect D Biol Crystallogr 69:1303–1313. https://doi.org/10.1107/S0907444913013280

    Article  CAS  Google Scholar 

  23. Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66(Pt2):125–132. https://doi.org/10.1107/S0907444909047337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leslie AGW, Powell HR (2007) Processing diffraction data with mosflm. In: Read RJ, Sussman JL (eds) Evolving methods for macromolecular crystallography. NATO Science Series, vol 245. Springer, Dordrecht

    Google Scholar 

  25. Winn MD, Ballard CC, Cowtan KD et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr Sect D Biol Crystallogr 67(Pt.4):235–242. https://doi.org/10.1107/S0907444910045749

    Article  CAS  Google Scholar 

  26. Navaza J, Saludjian P (1997) AMoRe: an automated molecular replacement program package. Methods Enzymol 276:581–594. https://doi.org/10.1016/S0076-6879(97)76079-8

    Article  CAS  PubMed  Google Scholar 

  27. McCoy AJ, Grosse-Kunstleve RW, Adams PD et al (2007) Phaser crystallographic software. J Appl Crystallogr 40(Pt.4):658–674. https://doi.org/10.1107/S0021889807021206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vagin A, Teplyakov A (1997) MOLREP: an automated program for molecular replacement. J Appl Crystallogr 30:1022–1025. https://doi.org/10.1107/S0021889897006766

    Article  CAS  Google Scholar 

  29. Adams PD, Afonine PV, Bunkóczi G et al (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr Sect D Biol Crystallogr 66(Pt.2):213–221. https://doi.org/10.1107/S0907444909052925

    Article  CAS  Google Scholar 

  30. Emsley P, Lohkamp B, Scott WG et al (2010) Features and development of coot. Acta Crystallogr Sect D Biol Crystallogr 66(Pt.4):486–501. https://doi.org/10.1107/S0907444910007493

    Article  CAS  Google Scholar 

  31. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53(Pt.3):240–255. https://doi.org/10.1107/S0907444996012255

    Article  CAS  PubMed  Google Scholar 

  32. Murshudov GN, Skubák P, Lebedev AA et al (2011) REFMAC 5 for the refinement of macromolecular crystal structures. Acta Crystallogr Sect D Biol Crystallogr 67:355–367. https://doi.org/10.1107/S0907444911001314

    Article  CAS  Google Scholar 

  33. Chen VB, Arendall WB, Headd JJ et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr Sect D Biol Crystallogr 66(Pt.1):12–21. https://doi.org/10.1107/S0907444909042073

    Article  CAS  Google Scholar 

  34. Hanwell MD, Curtis DE, Lonie DC et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Aust J Chem 4(1):17. https://doi.org/10.1186/1758-2946-4-17

    Article  CAS  Google Scholar 

  35. Schüttelkopf AW, Van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr Sect D Biol Crystallogr 60(Pt.8):1355–1363. https://doi.org/10.1107/S0907444904011679

    Article  CAS  Google Scholar 

  36. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51(10):2778–2786. https://doi.org/10.1021/ci200227u

    Article  CAS  PubMed  Google Scholar 

  37. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  38. Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecular interactions. J Med Chem 53(14):5061–5084. https://doi.org/10.1021/jm100112j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42(11):1210–1250. https://doi.org/10.1002/anie.200390319

    Article  CAS  Google Scholar 

  40. Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics 10:168. https://doi.org/10.1186/1471-2105-10-168

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dundas J, Ouyang Z, Tseng J et al (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:W116–W118. https://doi.org/10.1093/nar/gkl282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stank A, Kokh DB, Horn M et al (2017) TRAPP webserver: predicting protein binding site flexibility and detecting transient binding pockets. Nucleic Acids Res 45(W1):W325–W330. https://doi.org/10.1093/nar/gkx277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Porter CT (2004) The catalytic site atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res 32:129D–133D. https://doi.org/10.1093/nar/gkh028

    Article  CAS  Google Scholar 

  44. Torrance JW, Bartlett GJ, Porter CT et al (2005) Using a library of structural templates to recognise catalytic sites and explore their evolution in homologous families. J Mol Biol 347(3):565–581. https://doi.org/10.1016/j.jmb.2005.01.044

    Article  CAS  PubMed  Google Scholar 

  45. Van Linden OPJ, Kooistra AJ, Leurs R et al (2014) KLIFS: a knowledge-based structural database to navigate kinase-ligand interaction space. J Med Chem 57(2):249–277. https://doi.org/10.1021/jm400378w

    Article  CAS  PubMed  Google Scholar 

  46. Kooistra AJ, Kanev GK, Van Linden OPJ et al (2016) KLIFS: a structural kinase-ligand interaction database. Nucleic Acids Res 44:D365–D371. https://doi.org/10.1093/nar/gkv1082

    Article  CAS  PubMed  Google Scholar 

  47. Hendlich M, Bergner A, Günther J et al (2003) Relibase: design and development of a database for comprehensive analysis of protein-ligand interactions. J Mol Biol 326(2):607–620. https://doi.org/10.1016/S0022-2836(02)01408-0

    Article  CAS  PubMed  Google Scholar 

  48. Verma R, Mitchell-Koch K (2017) In silico studies of small molecule interactions with enzymes reveal aspects of catalytic function. Catalysts 7(7):212. https://doi.org/10.3390/catal7070212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu Y, Wang R, Yang CY et al (2007) Analysis of ligand-bound water molecules in high-resolution crystal structures of protein-ligand complexes. J Chem Inf Model 47(2):668–675. https://doi.org/10.1021/ci6003527

    Article  CAS  PubMed  Google Scholar 

  50. Spyrakis F, Ahmed MH, Bayden AS et al (2017) The roles of water in the protein matrix: a largely untapped resource for drug discovery. J Med Chem 60(16):6781–6828. https://doi.org/10.1021/acs.jmedchem.7b00057

    Article  CAS  PubMed  Google Scholar 

  51. Mavrokefalos N, Myrianthopoulos V, Chajistamatiou AS et al (2015) Discovery of the glycogen phosphorylase-modulating activity of a resveratrol glucoside by using a virtual screening protocol optimized for solvation effects. Planta Med 81(6):507–516. https://doi.org/10.1055/s-0035-1545910

    Article  CAS  PubMed  Google Scholar 

  52. Tan KP, Nguyen TB, Patel S et al (2013) Depth: a web server to compute depth, cavity sizes, detect potential small-molecule ligand-binding cavities and predict the pKa of ionizable residues in proteins. Nucleic Acids Res 41:W314–W321. https://doi.org/10.1093/nar/gkt503

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kelly LA, Mezulis S, Yates C et al (2015) The Phyre2 web portal for protein modelling, prediction, and analysis. Nat Protoc 10(6):845–858. https://doi.org/10.1038/nprot.2015.053

    Article  CAS  Google Scholar 

  54. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40. https://doi.org/10.1186/1471-2105-9-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Biasini M, Bienert S, Waterhouse A et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258. https://doi.org/10.1093/nar/gku340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32:526–531. https://doi.org/10.1093/nar/gkh468

    Article  CAS  Google Scholar 

  57. Koehn J, Hunt I (2009) High-throughput protein production (HTPP): a review of enabling technologies to expedite protein production. In: Doyle SA (ed) High throughput protein expression and purification. Methods in molecular biology, vol 498. Humana Press, Totowa, NJ

    Google Scholar 

  58. McPherson A, Gavira JA (2014) Introduction to protein crystallization. Acta Crystallogr Sect F Structural Biol Commun 70(Pt.1):2–20. https://doi.org/10.1107/S2053230X13033141

    Article  CAS  Google Scholar 

  59. Mamais M, Degli Esposti A, Kouloumoundra V et al (2017) A new potent inhibitor of glycogen phosphorylase reveals the basicity of the catalytic site. Chem—A Eur J 23(37):8800–8805. https://doi.org/10.1002/chem.201701591

    Article  CAS  Google Scholar 

  60. Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182. https://doi.org/10.1021/ci049714+

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Blundell TL, Jhoti H, Abell C (2002) High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov 1(1):45–54. https://doi.org/10.1038/nrd706

    Article  CAS  PubMed  Google Scholar 

  62. Cavasotto CN (ed) (2017) In silico drug discovery and design theory, methods, challenges, and applications. CRC Press, Boca Raton

    Google Scholar 

  63. de Vrueh RLA, Crommelin DJA (2017) Reflections on the future of pharmaceutical public-private partnerships: from input to impact. Pharm Res 34(10):1985–1999. https://doi.org/10.1007/s11095-017-2192-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelia D. Chrysina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chegkazi, M.S., Mamais, M., Sotiropoulou, A.I., Chrysina, E.D. (2018). Rational Drug Design Using Integrative Structural Biology. In: Mavromoustakos, T., Kellici, T. (eds) Rational Drug Design. Methods in Molecular Biology, vol 1824. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8630-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8630-9_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8629-3

  • Online ISBN: 978-1-4939-8630-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics