Skip to main content

Design of Drugs by Filtering Through ADMET, Physicochemical and Ligand-Target Flexibility Properties

  • Protocol
  • First Online:
Rational Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1824))

Abstract

There is a synergistic interaction between medicinal chemistry, chemoinformatics, and bioinformatics. The last one includes analyses of sequences as well as structural analysis which employ computational techniques such as docking studies and molecular dynamics (MD) simulations. Over the last years these techniques have allowed the development of new accurate computational tools for drug design. As a result, there have been an increased number of publications where computational methods such as pharmacophore modeling, de novo drug design, evaluation of physicochemical properties, and analysis of ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties have been quite useful for eliminating the compounds with poor physicochemical or toxicological properties. Furthermore, using MD simulations and docking analysis, it is possible to estimate the binding energy of the protein-ligand complexes by using scoring functions, as well as to structurally depict the binding pose of the compounds on proteins, in order to select the best evaluated compounds for subsequent synthetizing and evaluation through biological assays. In this work, we describe some computational tools that have been used for structure-based drug design of new compounds that target histone deacetylases (HDACs), which are known to be potential targets in cancer and parasitic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blundell TL, Abell C, Cleasby A et al (2002) High-throughput X-ray crystallography for drug discovery. In: Flower DR (ed) Drug design: special publication. Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. Müntener T, Häussinger D, Selenko P, Theillet FX (2016) In-cell protein structures from 2D NMR experiments. J Phys Chem Lett 7(14):2821–2825. https://doi.org/10.1021/acs.jpclett.6b01074

    Article  CAS  PubMed  Google Scholar 

  3. Mandal S, Moudgil M, Mandal SK (2009) Rational drug design. Eur J Pharmacol 625(1-3):90–100. https://doi.org/10.1016/j.ejphar.2009.06.065

    Article  CAS  PubMed  Google Scholar 

  4. Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432(7019):862–865. https://doi.org/10.1038/nature03197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Charifson PS, Kuntz ID (1997) Recent successes and continuing limitations in computer aided drug design. In: Charifson PS (ed) Practical application of computer aided drug design. Dekker, New York

    Google Scholar 

  6. Leelananda SP, Lindert S (2016) Computational methods in drug discovery. Beilstein J Org Chem 12:2694–2718. https://doi.org/10.3762/bjoc.12.267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aparoy P, Reddy KK, Reddanna P (2012) Structure and ligand based drug design strategies in the development of novel 5-LOX inhibitors. Curr Med Chem 19(22):3763–3778. https://doi.org/10.2174/092986712801661112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157. https://doi.org/10.2174/157340911795677602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Acharya C, Coop A, Polli JE, Mackerell AD Jr (2011) Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach. Curr Comput Aided Drug Des 7(1):10–22. https://doi.org/10.2174/157340911793743547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ishikawa T, Hirano H, Saito H et al (2012) Quantitative structure-activity relationship (QSAR) analysis to predict drug-drug interactions of ABC transporter ABCG2. Mini Rev Med Chem 12(6):505–514. https://doi.org/10.2174/138955712800493825

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Xing J, Xu Y et al (2015) In silico ADME/T modelling for rational drug design. Q Rev Biophys 48(4):488–515. https://doi.org/10.1017/S0033583515000190

    Article  PubMed  Google Scholar 

  12. Bello M, Martínez-Archundia M, Correa-Basurto J (2013) Automated docking for novel drug discovery. Expert Opin Drug Discovery 8(7):821–834. https://doi.org/10.1517/17460441.2013.794780

    Article  CAS  Google Scholar 

  13. Frisch MJ, Trucks GW, Schlegel HB et al (1998) Gaussian 98, revision A.9. Gaussian, Pittsburgh, PA

    Google Scholar 

  14. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools 4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anderson AC (2003) The process of structure-based drug design. Chem Biol 10(9):787–797. https://doi.org/10.1016/j.chembiol.2003.09.002

    Article  CAS  PubMed  Google Scholar 

  16. Rodríguez-Fonseca RA, Sixto-López Y, Fragoso-Vázquez MJ et al (2017) Design, synthesis and biological evaluation of a phenyl butyric acid derivative, N-(4-chlorophenyl)-4-phenylbutanamide: a HDAC6 inhibitor with anti-proliferative activity on cervix cancer and leukemia cell. Anticancer Agents Med Chem 17(10):1441–1454. https://doi.org/10.2174/1871520617666170103092851

    Article  CAS  PubMed  Google Scholar 

  17. Roper S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1(1):19–25. https://doi.org/10.1016/j.molonc.2007.01.001

    Article  CAS  Google Scholar 

  18. Lappano R, Pisano A, Maggiolini M (2014) GPER function in breast cancer: an overview. Front Endocrinol 5:66. https://doi.org/10.3389/fendo.2014.00066

    Article  Google Scholar 

  19. Oehme I, Deubzer HE, Wegener D et al (2009) Histone deacetylase 8 in neuroblastoma. Clin Cancer Res 15(1):91–99. https://doi.org/10.1158/1078-0432.CCR-08-0684

    Article  CAS  PubMed  Google Scholar 

  20. Vannini A, Volpari C, Filocamo G et al (2004) Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci USA 101(42):15064–15069. https://doi.org/10.1073/pnas.0404603101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou H, Skolnick J (2010) Improving threading algorithms for remote homology modeling by combining fragment and template comparisons. Proteins 78(9):2041–2048. https://doi.org/10.1002/prot.22717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sixto-López Y, Bello M, Rodríguez-Fonseca RA et al (2016) Searching the conformational complexity and binding properties of HDAC6 through docking and molecular dynamic simulations. J Biomol Struct Dyn 35(13):2794–2814. https://doi.org/10.1080/07391102.2016.1231084

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40. https://doi.org/10.1186/1471-2105-9-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haggarty SJ, Koeller KM, Wong JC et al (2003) Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A 100(8):4389–4394. https://doi.org/10.1073/pnas.0430973100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Laskowski R, Rullmann JA, MacArthur M et al (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8(4):477–486. https://doi.org/10.1007/BF00228148

    Article  CAS  PubMed  Google Scholar 

  26. Gille C, Frommel C (2001) STRAP: editor for STRuctural alignments of proteins. Bioinformatics 17(4):377–378. https://doi.org/10.1093/bioinformatics/17.4.377

    Article  CAS  PubMed  Google Scholar 

  27. Sixto-López Y, Gómez-Vidal JA, Correa-Basurto J (2014) Exploring the potential binding sites of some known HDAC inhibitors on some HDAC8 conformers by docking studies. Appl Biochem Biotechnol 173(7):1907–1926. https://doi.org/10.1007/s12010-014-0976-1

    Article  CAS  PubMed  Google Scholar 

  28. Van Drie JH (2003) Pharmacophore discovery-lessons learned. Curr Pharm Des 9(20):1649–1664. https://doi.org/10.2174/1381612033454568

    Article  PubMed  Google Scholar 

  29. Yang SY (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15(11-12):444–450. https://doi.org/10.1016/j.drudis.2010.03.013

    Article  CAS  PubMed  Google Scholar 

  30. Chia-Hsien L, Hsuan-Cheng H, Hsueh-Fen J (2011) Reviewing ligand-based rational drug design: the search for an ATP synthase. Int J Mol Sci 12(8):5304–5318. https://doi.org/10.3390/ijms12085304

    Article  CAS  Google Scholar 

  31. Martínez-Ramos F, Luna-Palencia GR, Vásquez-Moctezuma I et al (2016) Docking studies of glutamine valproic acid derivative (S)-5- amino-2-(heptan-4-ylamino)-5-oxopentanoic acid (Gln-VPA) on HDAC8 with biological evaluation in HeLa cells. Anticancer Agents Med Chem 16(11):1485–1490. https://doi.org/10.2174/1871520616666160204111158

    Article  CAS  PubMed  Google Scholar 

  32. Prestegui-Martel B, Bermúdez-Lugo JA, Chávez-Blanco A et al (2016) N-(2-hydroxyphenyl)-2-propylpentanamide, a valproic acid aryl derivative designed in silico with improved anti-proliferative activity in HeLa, rhabdomyosarcoma and breast cancer cells. J Enzyme Inhib Med Chem 31(sup3):140–149. https://doi.org/10.1080/14756366.2016.1210138

    Article  CAS  PubMed  Google Scholar 

  33. Martínez-Pacheco H, Ramírez-Galicia G, Vergara-Arias M et al (2017) Docking and QSAR studies of aryl-valproic acid derivatives to identify antiproliferative agents targeting the HDAC8. Anticancer Agents Med Chem 17(7):927–940. https://doi.org/10.2174/1871520616666161019143219

    Article  CAS  PubMed  Google Scholar 

  34. Lawless MS, Waldman M, Fraczkiewicz R, Clark RD (2016) Using cheminformatics in drug discovery. Handb Exp Pharmacol 232:139–168. https://doi.org/10.1007/164_2015_23

    Article  CAS  PubMed  Google Scholar 

  35. Butina D, Segall K, Frankcombe K (2002) Predicting ADME properties In silico: methods and models. Drug Discov Today 7(11):S83–S88. https://doi.org/10.1016/S1359-6446(02)02288-2

    Article  CAS  PubMed  Google Scholar 

  36. Ruyck J, Brysbaert G, Blossey R, Lensink M (2016) Molecular docking as a popular tool in drug design, an in silico travel. Adv Appl Bioinform Chem 9:1–11. https://doi.org/10.2147/AABC.S105289

    Article  PubMed  PubMed Central  Google Scholar 

  37. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bermúdez-Lugo JA, Perez-Gonzalez O, Rosales-Hernández MC et al (2012) Exploration of the valproic acid binding site on histone deacetylase 8 using docking and molecular dynamic simulations. J Mol Model 18(6):2301–2310. https://doi.org/10.1007/s00894-011-1240-z

    Article  CAS  PubMed  Google Scholar 

  39. Case DA, Cheatham TE 3rd, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688. https://doi.org/10.1002/jcc.20290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. https://doi.org/10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brooks BR, Bruccoleri RE, Olafson BD et al (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217. https://doi.org/10.1002/jcc.540040211

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CONACYT Mexico (CB-254600 and PDCPN-782), SIP20160204, COFAA-SIP/IPN COFAASIP/IPN and Centro de Nanociencias y Micro y Nanotecnologías del IPN, México, and CYTED: 214RT0482.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Martínez-Archundia, M., Bello, M., Correa-Basurto, J. (2018). Design of Drugs by Filtering Through ADMET, Physicochemical and Ligand-Target Flexibility Properties. In: Mavromoustakos, T., Kellici, T. (eds) Rational Drug Design. Methods in Molecular Biology, vol 1824. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8630-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8630-9_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8629-3

  • Online ISBN: 978-1-4939-8630-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics