Skip to main content

Cardiomyocyte Differentiation from Human Embryonic Stem Cells

  • Protocol
  • First Online:
Book cover Experimental Models of Cardiovascular Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1816))

Abstract

In vitro generated human cardiomyocytes hold the ultimate promise for heart patients for repair of injured or diseased myocardium, but they also provide experimental models for studying normal cardiomyocyte development, for disease modeling and for drug development. Here we provide reliable protocols for differentiation of human embryonic stem cells into functional cardiomyocytes, together with Notes about troubleshooting and optimizing such protocols for specific cell lines. This chapter also briefly discusses other published protocols and those further adapted for differentiation of induced pluripotent stem cells into cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  Google Scholar 

  2. Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132(4):661–680

    Article  CAS  PubMed  Google Scholar 

  3. Zhu Z, Huangfu D (2013) Human pluripotent stem cells: an emerging model in developmental biology. Development 140(4):705–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD et al (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19(10):971–974

    Article  CAS  PubMed  Google Scholar 

  5. Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ (2012) Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res 111(3):344–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang H, Hao J, Hong CC (2011) Cardiac induction of embryonic stem cells by a small molecule inhibitor of Wnt/β-catenin signaling. ACS Chem Biol 6:192–197

    Article  CAS  PubMed  Google Scholar 

  7. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M et al (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453(7194):524–528

    Article  CAS  PubMed  Google Scholar 

  8. Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X et al (2012) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc 8(1):162–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chong JJH, Yang X, Don CW, Minami E, Liu Y-W, Weyers JJ et al (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  Google Scholar 

  11. Davis RP, Casini S, Van Den Berg CW, Hoekstra M, Remme CA, Dambrot C et al (2012) Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease. Circulation 125(25):3079–3091

    Article  PubMed  Google Scholar 

  12. Mordwinkin NM, Burridge PW, Wu JC (2014) A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening and publication standards. J Cardiovasc Transl Res 6(1):22–30

    Article  Google Scholar 

  13. Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4(6):487–492

    Article  CAS  PubMed  Google Scholar 

  14. Mazzotta S, Neves C, Bonner RJ, Bernardo AS, Docherty K, Hoppler S (2016) Distinctive roles of canonical and noncanonical Wnt signaling in human embryonic cardiomyocyte development. Stem Cell Reports 7(4):764–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pei F, Jiang J, Bai S, Cao H, Tian L, Zhao Y et al (2017) Chemical-defined and albumin-free generation of human atrial and ventricular myocytes from human pluripotent stem cells. Stem Cell Res 19:94–103

    Article  CAS  PubMed  Google Scholar 

  16. Hausburg F, Jung JJ, Hoch M, Wolfien M, Rimmbach C, David R (2017) (Re-)programming of subtype specific cardiomyocytes. Adv Drug Deliv Rev 120:147–167

    Article  CAS  Google Scholar 

  17. Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD et al (2014) Chemically defined generation of human cardiomyocytes. Nat Methods 11(8):855–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hwang GH, Park SM, Han HJ, Kim JS, Yun SP, Ryu JM et al (2017) Purification of small molecule-induced cardiomyocytes from human induced pluripotent stem cells using a reporter system. J Cell Physiol 232(12):3384–3395

    Article  CAS  PubMed  Google Scholar 

  19. Lee JH, Protze SI, Laksman Z, Backx PH, Keller GM (2017) Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell 21(2):179–194.e4

    Article  CAS  PubMed  Google Scholar 

  20. Conner DA (2001) Mouse embryo fibroblast (MEF) feeder cell preparation. In: Current protocols in molecular biology. Wiley, Hoboken

    Google Scholar 

Download references

Acknowledgments

We are grateful to Po-Lin So and Bruce Conklin (Gladstone Institutes) for providing a modified version of the Lian et al. protocol for cardiomyocyte differentiation from human ES cells. We thank Kate Watt, and Yvonne Turnbull (University of Aberdeen), for lab management and technical support, Rory J Bonner (University of Aberdeen) for providing images, the British Heart Foundation (PG/12/75/29851) for research funding, and the Institute of Medical Sciences (University of Aberdeen) for PhD studentship funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hoppler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mazzotta, S., Lynch, A.T., Hoppler, S. (2018). Cardiomyocyte Differentiation from Human Embryonic Stem Cells. In: Ishikawa, K. (eds) Experimental Models of Cardiovascular Diseases. Methods in Molecular Biology, vol 1816. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8597-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8597-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8596-8

  • Online ISBN: 978-1-4939-8597-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics