Skip to main content

Constructing Free Energy Landscapes of Nucleic Acid Hairpin Unfolding

  • Protocol
  • First Online:
DNA Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1811))

Abstract

Single nucleic acid molecules form hairpins that may stabilize secondary and tertiary structures as well as perform enzymatic and other chemical functions. Considerable progress has been made in the effort to understand the contributions of various factors to the stability of a given hairpin sequence. For a given sequence, it is possible to compute both the most likely structural arrangements and their associated free energies over a range of experimental conditions. However, there are many observed hairpin irregularities for which the energies and function are not well understood. Here we examine the irregular RNA Transactivation Response (TAR) hairpin from the HIV-1 genome. Using single molecule optical tweezers, the hairpin is force unfolded, revealing the overall unfolding free energy and the character of the transition state. These measurements allow the construction of a simple energy landscape from unfolding measurements, which can be directly compared to a theoretical landscape. This method is easily adapted to other structures, including the effects of noncanonical bases and even ligand binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cech TR, Zaug AJ, Grabowski PJ (1981) In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27(3 Pt 2):487–496

    Article  CAS  Google Scholar 

  2. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31(1):147–157

    Article  CAS  Google Scholar 

  3. Levin JG, Guo J, Rouzina I, Musier-Forsyth K (2005) Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. Prog Nucleic Acid Res Mol Biol 80:217–286. https://doi.org/10.1016/S0079-6603(05)80006-6

    Article  PubMed  Google Scholar 

  4. Berkhout B, Jeang KT (1992) Functional roles for the TATA promoter and enhancers in basal and tat-induced expression of the human immunodeficiency virus type 1 long terminal repeat. J Virol 66(1):139–149

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dudko OK, Mathe J, Szabo A, Meller A, Hummer G (2007) Extracting kinetics from single-molecule force spectroscopy: nanopore unzipping of DNA hairpins. Biophys J 92(12):4188–4195. https://doi.org/10.1529/biophysj.106.102855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Crooks GE (1999) Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys Rev E 60(3):2721–2726

    Article  CAS  Google Scholar 

  7. McCauley MJ, Rouzina I, Manthei KA, Gorelick RJ, Musier-Forsyth K, Williams MC (2015) Targeted binding of nucleocapsid protein transforms the folding landscape of HIV-1 TAR RNA. Proc Natl Acad Sci U S A 112(44):13555–13560. https://doi.org/10.1073/pnas.1510100112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Woodside MT, Behnke-Parks WM, Larizadeh K, Travers K, Herschlag D, Block SM (2006) Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc Natl Acad Sci U S A 103(16):6190–6195. https://doi.org/10.1073/pnas.0511048103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415. https://doi.org/10.1093/nar/gkg595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Woodside MT, Anthony PC, Behnke-Parks WM, Larizadeh K, Herschlag D, Block SM (2006) Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid. Science (New York, NY) 314(5801):1001–1004. https://doi.org/10.1126/science.1133601

    Article  Google Scholar 

  11. Shokri L, McCauley MJ, Rouzina I, Williams MC (2008) DNA overstretching in the presence of glyoxal: structural evidence of force-induced DNA melting. Biophys J 95(3):1248–1255. https://doi.org/10.1529/biophysj.108.132688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Einert Thomas R, Netz Roland R (2011) Theory for RNA folding, stretching, and melting including loops and salt. Biophys J 100(11):2745–2753. https://doi.org/10.1016/j.bpj.2011.04.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cecconi C, Shank EA, Marqusee S, Bustamante C (2011) DNA molecular handles for single-molecule protein-folding studies by optical tweezers. Methods Mol Biol 749:255–271. https://doi.org/10.1007/978-1-61779-142-0_18

    Article  CAS  PubMed  Google Scholar 

  14. McCauley MJ, Williams MC (2011) Measuring DNA-protein binding affinity on a single molecule using optical tweezers. Methods Mol Biol 749:305–315. https://doi.org/10.1007/978-1-61779-142-0_21

    Article  CAS  PubMed  Google Scholar 

  15. Chaurasiya KR, Paramanathan T, McCauley MJ, Williams MC (2010) Biophysical characterization of DNA binding from single molecule force measurements. Phys Life Rev 7(3):299–341. https://doi.org/10.1016/j.plrev.2010.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  16. McCauley MJ, Williams MC (2009) Optical tweezers experiments resolve distinct modes of DNA-protein binding. Biopolymers 91(4):265–282. https://doi.org/10.1002/bip.21123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zuker M, Markham N (2017) The mfold Web Server. The RNA Institute, College of Arts and Sciences, State University of New York at Albany, Albany. http://unafold.rna.albany.edu/?q=mfold. Accessed June 2017

    Google Scholar 

  18. Greenleaf WJ, Frieda KL, Foster DAN, Woodside MT, Block SM (2008) Direct observation of hierarchical folding in single Riboswitch aptamers. Science (New York, NY) 319(5863):630–633. https://doi.org/10.1126/science.1151298

    Article  CAS  Google Scholar 

  19. Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78(14):2690–2693. https://doi.org/10.1103/PhysRevLett.78.2690

    Article  CAS  Google Scholar 

  20. Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data. J Comput Phys 22(2):245–268. https://doi.org/10.1016/0021-9991(76)90078-4

    Article  Google Scholar 

  21. Collin D, Ritort F, Jarzynski C, Smith SB, Tinoco I, Bustamante C (2005) Verification of the crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437(8):231–234. https://doi.org/10.1038/nature04061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Crooks GE (2000) Path-ensemble averages in systems driven far from equilibrium. Phys Rev E 61(3):2361–2366. https://doi.org/10.1103/PhysRevE.61.2361

    Article  CAS  Google Scholar 

  23. Li PT, Collin D, Smith SB, Bustamante C, Tinoco I Jr (2006) Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods. Biophys J 90(1):250–260. https://doi.org/10.1529/biophysj.105.068049

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Dudko OK (2013) A transformation for the mechanical fingerprints of complex biomolecular interactions. Proc Natl Acad Sci 110(41):16432–16437. https://doi.org/10.1073/pnas.1309101110

    Article  PubMed  Google Scholar 

  25. Dudko OK, Hummer G, Szabo A (2006) Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys Rev Lett 96(10):108101. https://doi.org/10.1103/PhysRevLett.96.108101

    Article  CAS  PubMed  Google Scholar 

  26. Vieregg J, Cheng W, Bustamante C, Tinoco I Jr (2007) Measurement of the effect of monovalent cations on RNA hairpin stability. J Am Chem Soc 129(48):14966–14973. https://doi.org/10.1021/ja074809o

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pierse CA, Dudko OK (2017) Distinguishing signatures of multipathway conformational transitions. Phys Rev Lett 118(8):088101. https://doi.org/10.1103/PhysRevLett.118.088101

    Article  PubMed  Google Scholar 

  28. Dudko OK, Hummer G, Szabo A (2008) Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc Natl Acad Sci U S A 105(41):15755–15760. https://doi.org/10.1073/pnas.0806085105

    Article  PubMed  PubMed Central  Google Scholar 

  29. Smith S, Finzi L, Bustamante C (1992) Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science (New York, NY) 258(5085):1122–1126. https://doi.org/10.1126/science.1439819

    Article  CAS  Google Scholar 

  30. Onoa B, Dumont S, Liphardt J, Smith SB, Tinoco I Jr, Bustamante C (2003) Identifying kinetic barriers to mechanical unfolding of the T. thermophila ribozyme. Science (New York, NY) 299(5614):1892–1895. https://doi.org/10.1126/science.1081338

    Article  CAS  Google Scholar 

  31. Seol Y, Li J, Nelson PC, Perkins TT, Betterton MD (2007) Elasticity of short DNA molecules: theory and experiment for contour lengths of 0.6-7 microm. Biophys J 93(12):4360–4373. https://doi.org/10.1529/biophysj.107.112995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peters JP, Mogil LS, McCauley MJ, Williams MC, Maher LJ 3rd (2014) Mechanical properties of base-modified DNA are not strictly determined by base stacking or electrostatic interactions. Biophys J 107(2):448–459. https://doi.org/10.1016/j.bpj.2014.04.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tinoco I Jr, Li PT, Bustamante C (2006) Determination of thermodynamics and kinetics of RNA reactions by force. Q Rev Biophys 39(4):325–360. https://doi.org/10.1017/S0033583506004446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numerical Recipies in C: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants NIH GM072462 and NSF MCB-1243883 to M.C.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark C. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

McCauley, M.J., Rouzina, I., Williams, M.C. (2018). Constructing Free Energy Landscapes of Nucleic Acid Hairpin Unfolding. In: Zuccheri, G. (eds) DNA Nanotechnology. Methods in Molecular Biology, vol 1811. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8582-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8582-1_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8581-4

  • Online ISBN: 978-1-4939-8582-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics