Skip to main content

Principles of Auditory Object Formation by Nonhuman Animals

  • Chapter
  • First Online:
Effects of Anthropogenic Noise on Animals

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 66))

Abstract

Early in the twentieth century, the Gestalt psychologists outlined principles governing the ability of the human visual system to construct integrated percepts of objects in visual scenes. By the close of the twentieth century, ample evidence suggested that the human auditory system follows similar principles of perceptual organization. Several Gestalt principles of grouping—proximity, similarity, common fate, good continuation, and familiarity, govern our ability to decompose complex mixtures of sounds into percepts of auditory objects in acoustic scenes. Auditory objects are perceptual groupings of sounds generated by the same source that are present at different times and in different parts of the frequency spectrum. The ability to form auditory objects likely plays an important role in allowing animals to navigate human-altered soundscapes. This chapter reviews studies of insects, fish, frogs, birds, and nonhuman mammals in which experimenters manipulated potential grouping cues and measured performance on behavioral tasks designed to reveal the animal’s perception of auditory objects. These studies employed techniques ranging from measuring natural behaviors in response to communication signals to operant conditioning of responses to artificial sounds such as pure tones. The totality of the studies reviewed here unequivocally reveals that nonhuman animals not only form auditory objects but that they also follow the Gestalt principles of grouping. These principles and their underlying mechanisms allow animals to perceptually organize the often noisy and complex acoustic environments in which they live.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • American National Standards Institute (ANSI). (2013). American National Standard Acoustical Terminology. ANSI S1.1, American National Standards Institute for the Acoustical Society of America, Washington, DC.

    Google Scholar 

  • Barber, J., Razak, K., & Fuzessery, Z. (2003). Can two streams of auditory information be processed simultaneously? Evidence from the gleaning bat Antrozous pallidus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 189(11), 843–855.

    Article  CAS  PubMed  Google Scholar 

  • Baugh, A. T., Ryan, M. J., Bernal, X. E., Rand, A. S., & Bee, M. A. (2016). Female tĂşngara frogs do not experience the continuity illusion. Behavioral Neuroscience, 130(1), 62–74.

    Article  PubMed  Google Scholar 

  • Bee, M. A. (2010). Spectral preferences and the role of spatial coherence in simultaneous integration in gray treefrogs (Hyla chrysoscelis). Journal of Comparative Psychology, 124(4), 412–424.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bee, M. A. (2012). Sound source perception in anuran amphibians. Current Opinion in Neurobiology, 22(2), 301–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bee, M. A. (2015). Treefrogs as animal models for research on auditory scene analysis and the cocktail party problem. International Journal of Psychophysiology, 95(2), 216–237.

    Article  PubMed  Google Scholar 

  • Bee, M. A. (2016). Social recognition in anurans. In M. A. Bee & C. T. Miller (Eds.), Psychological Mechanisms in Animal Communication (pp. 169–221). New York: Springer International Publishing.

    Chapter  Google Scholar 

  • Bee, M. A., & Klump, G. M. (2004). Primitive auditory stream segregation: A neurophysiological study in the songbird forebrain. Journal of Neurophysiology, 92(2), 1088–1104.

    Article  PubMed  Google Scholar 

  • Bee, M. A., & Klump, G. M. (2005). Auditory stream segregation in the songbird forebrain: Effects of time intervals on responses to interleaved tone sequences. Brain, Behavior and Evolution, 66(3), 197–214.

    Article  PubMed  Google Scholar 

  • Bee, M. A., & Riemersma, K. K. (2008). Does common spatial origin promote the auditory grouping of temporally separated signal elements in grey treefrogs? Animal Behaviour, 76(3), 831–843.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bee, M. A., & Miller, C. T. (2016). Signaler and receiver psychology. In M. A. Bee & C. T. Miller (Eds.), Psychological Mechanisms in Animal Communication (pp. 1–16). New York: Springer International Publishing.

    Chapter  Google Scholar 

  • Bee, M. A., Micheyl, C., Oxenham, A. J., & Klump, G. M. (2010). Neural adaptation to tone sequences in the songbird forebrain: Patterns, determinants, and relation to the build-up of auditory streaming. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 196(8), 543–557.

    Article  PubMed  Google Scholar 

  • Benney, K. S., & Braaten, R. F. (2000). Auditory scene analysis in Estrildid finches (Taeniopygia guttata and Lonchura striata domestica): A species advantage for detection of conspecific song. Journal of Comparative Psychology, 114(2), 174–182.

    Article  CAS  PubMed  Google Scholar 

  • Bizley, J. K., & Cohen, Y. E. (2013). The what, where and how of auditory-object perception. Nature Reviews Neuroscience, 14(10), 693–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braaten, R. F., & Hulse, S. H. (1993). Perceptual organization of auditory temporal patterns in European starlings (Sturnus vulgaris). Perception & Psychophysics, 54(5), 567–578.

    Article  CAS  Google Scholar 

  • Braaten, R. F., & Leary, J. C. (1999). Temporal induction of missing birdsong segments in European starlings. Psychological Science, 10(2), 162–166.

    Article  Google Scholar 

  • Bregman, A. (1990). Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bush, S. L., Gerhardt, H. C., & Schul, J. (2002). Pattern recognition and call preferences in treefrogs (Anura: Hylidae): A quantitative analysis using a no-choice paradigm. Animal Behaviour, 63(1), 7–14.

    Article  Google Scholar 

  • Carlyon, R. P. (2004). How the brain separates sounds. Trends in Cognitive Sciences, 8(10), 465–471.

    Article  PubMed  Google Scholar 

  • Christison-Lagay, K. L., & Cohen, Y. E. (2014). Behavioral correlates of auditory streaming in rhesus macaques. Hearing Research, 309, 17–25.

    Article  PubMed  Google Scholar 

  • Darwin, C. J. (2008). Spatial hearing and perceiving sources. In W. A. Yost, A. N. Popper, & R. R. Fay (Eds.), Auditory Perception of Sound Sources (pp. 215–232). New York: Springer US.

    Google Scholar 

  • Darwin, C. J., & Carlyon, R. P. (1995). Auditory grouping. In B. C. J. Moore (Ed.), The Handbook of Perception and Cognition, Vol. 6: Hearing (pp. 387–424). New York: Academic Press.

    Google Scholar 

  • Dent, M. L., Martin, A. K., Flaherty, M. M., & Neilans, E. G. (2016). Cues for auditory stream segregation of birdsong in budgerigars and zebra finches: Effects of location, timing, amplitude, and frequency. The Journal of the Acoustical Society of America, 139(2), 674–683.

    Article  PubMed  Google Scholar 

  • DolleĹľal, L.-V., Itatani, N., Gunther, S., & Klump, G. M. (2012). Auditory streaming by phase relations between components of harmonic complexes: A comparative study of human subjects and bird forebrain neurons. Behavioral Neuroscience, 126(6), 797–808.

    Article  PubMed  Google Scholar 

  • Elhilali, M., Ma, L., Micheyl, C., Oxenham, A. J., & Shamma, S. A. (2009). Temporal coherence in the perceptual organization and cortical representation of auditory scenes. Neuron, 61(2), 317–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farris, H. E., & Ryan, M. J. (2011). Relative comparisons of call parameters enable auditory grouping in frogs. Nature Communications, 2, 410.

    Article  CAS  PubMed  Google Scholar 

  • Farris, H. E., & Taylor, R. C. (2016). Mate searching animals as model systems for understanding perceptual grouping. In M. A. Bee & C. T. Miller (Eds.), Psychological Mechanisms in Animal Communication (pp. 89–118). New York: Springer International Publishing.

    Chapter  Google Scholar 

  • Farris, H. E., Rand, A. S., & Ryan, M. J. (2002). The effects of spatially separated call components on phonotaxis in tĂşngara frogs: Evidence for auditory grouping. Brain, Behavior and Evolution, 60(3), 181–188.

    Article  PubMed  Google Scholar 

  • Farris, H., Rand, A. S., & Ryan, M. J. (2005). The effects of time, space and spectrum on auditory grouping in tĂşngara frogs. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 191(12), 1173–1183.

    Article  CAS  PubMed  Google Scholar 

  • Fay, R. R. (1998). Auditory stream segregation in goldfish (Carassius auratus). Hearing Research, 120(1), 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Fay, R. R. (2000). Spectral contrasts underlying auditory stream segregation in goldfish (Carassius auratus). Journal of the Association for Research in Otolaryngology, 1(2), 120–128.

    Google Scholar 

  • Fay, R. R. (2008). Sound source perception and stream segregation in nonhuman vertebrate animals. In W. A. Yost, A. N. Popper, & R. R. Fay (Eds.), Auditory Perception of Sound Sources (pp. 307–323), New York: Springer US.

    Google Scholar 

  • Fay, R. R., & Popper, A. N. (2000). Evolution of hearing in vertebrates: The inner ears and processing. Hearing Research, 149(1–2), 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Fishman, Y. I., Reser, D. H., Arezzo, J. C., & Steinschneider, M. (2001). Neural correlates of auditory stream segregation in primary auditory cortex of the awake monkey. Hearing Research, 151(1), 167–187.

    Article  CAS  PubMed  Google Scholar 

  • Fishman, Y. I., Arezzo, J. C., & Steinschneider, M. (2004). Auditory stream segregation in monkey auditory cortex: Effects of frequency separation, presentation rate, and tone duration. The Journal of the Acoustical Society of America, 116(3), 1656–1670.

    Article  PubMed  Google Scholar 

  • Gerhardt, H. C. (2005). Acoustic spectral preferences in two cryptic species of grey treefrogs: Implications for mate choice and sensory mechanisms. Animal Behaviour, 70(1), 39–48.

    Article  Google Scholar 

  • Gerhardt, H. C., & Huber, F. (2002). Acoustic Communication in Insects and Anurans: Common Problems and Diverse Solutions. Chicago, IL: The University of Chicago Press.

    Google Scholar 

  • Gerhardt, H. C., MartĂ­nez-Rivera, C. C., Schwartz, J. J., Marshall, V. T., & Murphy, C. G. (2007). Preferences based on spectral differences in acoustic signals in four species of treefrogs (Anura: Hylidae). Journal of Experimental Biology, 210(17), 2990–2998.

    Article  PubMed  Google Scholar 

  • Goldstein, E. B. (2010). Introduction to perception. In Sensation and Perception (pp. 3–20). Belmont, CA: Wadsworth Cengage Learning.

    Google Scholar 

  • Griffiths, T. D., & Warren, J. D. (2004). What is an auditory object? Nature Reviews Neuroscience, 5(11), 887–892.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann, W. M., & Johnson, D. (1991). Stream segregation and peripheral channeling. Music Perception: An Interdisciplinary Journal, 9(2), 155–183.

    Article  Google Scholar 

  • Hulse, S. H. (2002). Auditory scene analysis in animal communication. Advances in the Study of Behavior, 31, 163–200.

    Article  Google Scholar 

  • Hulse, S. H., MacDougall-Shackleton, S. A., & Wisniewski, A. B. (1997). Auditory scene analysis by songbirds: Stream segregation of birdsong by European starlings (Sturnus vulgaris). Journal of Comparative Psychology, 111(1), 3–13.

    Article  CAS  PubMed  Google Scholar 

  • Itatani, N., & Klump, G. M. (2009). Auditory streaming of amplitude-modulated sounds in the songbird forebrain. Journal of Neurophysiology, 101(6), 3212–3225.

    Article  PubMed  Google Scholar 

  • Itatani, N., & Klump, G. M. (2011). Neural correlates of auditory streaming of harmonic complex sounds with different phase relations in the songbird forebrain. Journal of Neurophysiology, 105(1), 188–199.

    Article  PubMed  Google Scholar 

  • Itatani, N., & Klump, G. M. (2014). Neural correlates of auditory streaming in an objective behavioral task. Proceedings of the National Academy of Sciences of the United States of America, 111(29), 10738–10743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izumi, A. (2002). Auditory stream segregation in Japanese monkeys. Cognition, 82(3), B113-B122.

    Article  PubMed  Google Scholar 

  • Klump, G. M. (2016). Perceptual and neural mechanisms of auditory scene analysis in the European starling. In M. A. Bee & C. T. Miller (Eds.), Psychological Mechanisms in Animal Communication (pp. 57–88). New York: Springer International Publishing.

    Chapter  Google Scholar 

  • Klump, G. M., Fichtel, C., Hamann, I., & Langemann, U. (1999). Filling in the gap: Evidence for apparent continuity in the songbird auditory system. ARO Midwinter Research Meeting, Abstract 108.

    Google Scholar 

  • Kobayasi, K. I., Usami, A., & Riquimaroux, H. (2012). Behavioral evidence for auditory induction in a species of rodent: Mongolian gerbil (Meriones unguiculatus). The Journal of the Acoustical Society of America, 132(6), 4063–4068.

    Article  PubMed  Google Scholar 

  • Ma, L., Micheyl, C., Yin, P., Oxenham, A. J., & Shamma, S. A. (2010). Behavioral measures of auditory streaming in ferrets (Mustela putorius). Journal of Comparative Psychology, 124(3), 317–330.

    Article  PubMed  PubMed Central  Google Scholar 

  • MacDougall-Shackleton, S. A., Hulse, S. H., Gentner, T. Q., & White, W. (1998). Auditory scene analysis by European starlings (Sturnus vulgaris): Perceptual segregation of tone sequences. The Journal of the Acoustical Society of America, 103(6), 3581–3587.

    Article  CAS  PubMed  Google Scholar 

  • Micheyl, C., & Oxenham, A. J. (2010). Objective and subjective psychophysical measures of auditory stream integration and segregation. Journal of the Association for Research in Otolaryngology 11(4), 709–724.

    Article  PubMed  PubMed Central  Google Scholar 

  • Micheyl, C., Carlyon, R. P., Shtyrov, Y., Hauk, O., Dodson, T., & PullvermĂĽller, F. (2003). The neurophysiological basis of the auditory continuity illusion: A mismatch negativity study. Journal of Cognitive Neuroscience, 15(5), 747–758.

    Article  PubMed  Google Scholar 

  • Micheyl, C., Tian, B., Carlyon, R. P., & Rauschecker, J. P. (2005). Perceptual organization of tone sequences in the auditory cortex of awake macaques. Neuron, 48(1), 139–148.

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks, J. C., & Onsan, Z. A. (2012). Stream segregation with high spatial acuity. The Journal of the Acoustical Society of America, 132(6), 3896–3911.

    Article  PubMed  PubMed Central  Google Scholar 

  • Middlebrooks, J. C., & Bremen, P. (2013). Spatial stream segregation by auditory cortical neurons. The Journal of Neuroscience, 33(27), 10986–11001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, C. T., & Bee, M. A. (2012). Receiver psychology turns 20: Is it time for a broader approach? Animal Behaviour, 83(2), 331–343.

    Article  PubMed  Google Scholar 

  • Miller, C. T., Dibble, E., & Hauser, M. D. (2001). Amodal completion of acoustic signals by a nonhuman primate. Nature Neuroscience, 4(8), 783–784.

    Article  CAS  PubMed  Google Scholar 

  • Moss, C. F., & Surlykke, A. (2001). Auditory scene analysis by echolocation in bats. The Journal of the Acoustical Society of America, 110(4), 2207–2226.

    Article  CAS  PubMed  Google Scholar 

  • Neilans, E. G., & Dent, M. L. (2015a). Temporal coherence for pure tones in budgerigars (Melopsittacus undulatus) and humans (Homo sapiens). Journal of Comparative Psychology, 129(1), 52–61.

    Article  PubMed  Google Scholar 

  • Neilans, E. G., & Dent, M. L. (2015b). Temporal coherence for complex signals in budgerigars (Melopsittacus undulatus) and humans (Homo sapiens). Journal of Comparative Psychology, 129(2), 174–180.

    Article  PubMed  Google Scholar 

  • Nityananda, V., & Bee, M. A. (2011). Finding your mate at a cocktail party: Frequency separation promotes auditory stream segregation of concurrent voices in multi-species frog choruses. PLoS ONE, 6(6), e21191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noto, M., Nishikawa, J., & Tateno, T. (2016). An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex. Neuroscience, 318, 58–83.

    Article  CAS  PubMed  Google Scholar 

  • Palmer, S. E. (2002). Perceptual organization in vision. In H. Pashler & S. Yantis (Eds.), Stevens’ Handbook of Experimental Psychology, Vol. 1: Sensation and Perception, 3rd ed. (pp. 177–234). New York: John Wiley & Sons.

    Google Scholar 

  • Park, T. J., & Dooling, R. J. (1991). Sound localization in small birds: Absolute localization in azimuth. Journal of Comparative Psychology, 105(2), 125–133.

    Article  CAS  PubMed  Google Scholar 

  • Petkov, C. I., & Sutter, M. L. (2011). Evolutionary conservation and neuronal mechanisms of auditory perceptual restoration. Hearing Research, 271(1), 54–65.

    Article  PubMed  Google Scholar 

  • Petkov, C. I., O’Connor, K. N., & Sutter, M. L. (2003). Illusory sound perception in macaque monkeys. The Journal of Neuroscience, 23(27), 9155–9161.

    Article  CAS  PubMed  Google Scholar 

  • Petkov, C. I., O’Connor, K. N., & Sutter, M. L. (2007). Encoding of illusory continuity in primary auditory cortex. Neuron, 54(1), 153–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Populin, L. C., & Yin, T. C. (1998). Behavioral studies of sound localization in the cat. The Journal of Neuroscience, 18(6), 2147–2160.

    Article  CAS  PubMed  Google Scholar 

  • Pressnitzer, D., Sayles, M., Micheyl, C., & Winter, I. M. (2008). Perceptual organization of sound begins in the auditory periphery. Current Biology, 18(15), 1124–1128.

    Article  CAS  PubMed  Google Scholar 

  • Römer, H. (2013). Masking by noise in acoustic insects: Problems and solutions. In H. Brumm (Ed.), Animal Communication and Noise (pp. 33–63). Berlin Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Scholes, C., Palmer, A. R., & Sumner, C. J. (2015). Stream segregation in the anesthetized auditory cortex. Hearing Research, 328, 48–58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schul, J., & Sheridan, R. (2006). Auditory stream segregation in an insect. Neuroscience, 138(1), 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, J. J., & Gerhardt, H. C. (1995). Directionality of the auditory system and call pattern recognition during acoustic interference in the gray treefrog, Hyla versicolor. Auditory Neuroscience, 1, 195–206.

    Google Scholar 

  • Schwartz, J. J., Huth, K., Jones, S. H., Brown, R., & Marks, J. (2010). Tests for call restoration in the gray treefrog, Hyla versicolor. Bioacoustics, 20, 59–86.

    Article  Google Scholar 

  • Seeba, F., & Klump, G. M. (2009). Stimulus familiarity affects perceptual restoration in the European starling (Sturnus vulgaris). PLoS ONE, 4(6), e5974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seeba, F., Schwartz, J. J., & Bee, M. A. (2010). Testing an auditory illusion in frogs: Perceptual restoration or sensory bias? Animal Behaviour, 79(6), 1317–1328.

    Article  PubMed  PubMed Central  Google Scholar 

  • Selezneva, E., Gorkin, A., Mylius, J., Noesselt, T., Scheich, H., & Brosch, M. (2012). Reaction times reflect subjective auditory perception of tone sequences in macaque monkeys. Hearing Research, 294(1), 133–142.

    Article  PubMed  Google Scholar 

  • Shamma, S. A., Elhilali, M., & Micheyl, C. (2011). Temporal coherence and attention in auditory scene analysis. Trends in Neurosciences, 34(3), 114–123.

    Article  CAS  PubMed  Google Scholar 

  • Stebbins, W. C. (1973) Hearing of old world monkeys (Cercopithecinae). American Journal of Physical Anthropology, 38(2), 357–364.

    Article  CAS  PubMed  Google Scholar 

  • Sugita, Y. (1997). Neuronal correlates of auditory induction in the cat cortex. Neuroreport, 8(5), 1155–1159.

    Article  CAS  PubMed  Google Scholar 

  • van Noorden, L. P. A. S. (1975). Temporal Coherence in the Perception of Tone Sequences. Unpublished doctoral dissertation, Technische Hogeschool Eindhoven, Eindhoven, The Netherlands.

    Google Scholar 

  • von Helversen, D. (1984). Parallel processing in auditory pattern recognition and directional analysis by the grasshopper Chorthippus biguttulus L.(Acrididae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 154(6), 837–846.

    Article  Google Scholar 

  • Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & von der Heydt, R. (2012a). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. Psychological Bulletin, 138(6), 1172–1217.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagemans, J., Feldman, J., Gepshtein, S., Kimchi, R., Pomerantz, J. R., van der Helm, P. A., & van Leeuwen, C. (2012b). A century of Gestalt psychology in visual perception: II. Conceptual and theoretical foundations. Psychological Bulletin, 138(6), 1218–1252.

    Article  PubMed  PubMed Central  Google Scholar 

  • Warren, R. M. (1970). Perceptual restoration of missing speech sounds. Science, 167(3917), 392–393.

    Article  CAS  PubMed  Google Scholar 

  • Warren, R. M. (1984). Perceptual restoration of obliterated sounds. Psychological Bulletin, 96(2), 371–383.

    Article  CAS  PubMed  Google Scholar 

  • Weber, T., & Thorson, J. (1988). Auditory behavior of the cricket. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 163(1), 13–22.

    Article  Google Scholar 

  • Wisniewski, A. B., & Hulse, S. H. (1997). Auditory scene analysis in European starlings (Sturnus vulgaris): Discrimination of song segments, their segregation from multiple and reversed conspecific songs, and evidence for conspecific song categorization. Journal of Comparative Psychology, 111(4), 337–350.

    Article  Google Scholar 

  • Yao, J. D., Bremen, P., & Middlebrooks, J. C. (2015). Emergence of spatial stream segregation in the ascending auditory pathway. The Journal of Neuroscience, 35(49), 16199–16212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yost, W. A., Popper, A. N., & Fay, R. R. (Eds.). (2008) Auditory Perception of Sound Sources. New York: Springer US.

    Google Scholar 

Download references

Compliance with Ethics Requirements

Micheal L. Dent declares that she has no conflict of interest.

Mark A. Bee declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micheal L. Dent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dent, M.L., Bee, M.A. (2018). Principles of Auditory Object Formation by Nonhuman Animals. In: Slabbekoorn, H., Dooling, R., Popper, A., Fay, R. (eds) Effects of Anthropogenic Noise on Animals. Springer Handbook of Auditory Research, vol 66. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8574-6_3

Download citation

Publish with us

Policies and ethics