Skip to main content

The Past, Present, and Future of HLA Typing in Transplantation

  • Protocol
  • First Online:
HLA Typing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1802))

Abstract

The HLA region is the most polymorphic genes in the human genome and is associated with an increasing number of disease states. Historically, HLA typing methodology has been governed by phenotypic determination. This practice has evolved into the use of molecular methods such as real-time PCR, sequence-specific oligonucleotides, and sequencing-based methods. Numerous studies have identified HLA matching as a key determinate to improve patient outcomes from transplantation. Solid-organ transplants focus on HLA-DRB1 in renal organ allocation while hematopoietic cell transplants focus on HLA-A, -B, -C, -DRB1 matching. The role of HLA typing in the future will be driven by HLA expression, understanding of HLA haplotypes, and rapid HLA typing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merrill JP, Murray JE, Harrison JH, Guild WR (1956) Successful homotransplantation of the human kidney between identical twins. J Am Med Assoc 160(4):277–282

    Article  CAS  PubMed  Google Scholar 

  2. Barnard CN (1967) The operation. A human cardiac transplant: an interim report of a successful operation performed at Groote Schuur hospital, cape town. S Afr Med J 41(48):1271–1274

    PubMed  CAS  Google Scholar 

  3. Hardy JD, Webb WR, Dalton ML Jr, Walker GR Jr (1963) Lung homotransplantation in man. JAMA 186:1065–1074

    Article  CAS  PubMed  Google Scholar 

  4. Lillehei RC, Idezuki Y, Kelly WD, Najarian JS, Merkel FK, Goetz FC (1969) Transplantation of the intestine and pancreas. Transplant Proc 1(1):230–238

    PubMed  CAS  Google Scholar 

  5. Starzl TE, Brettschneider L, Penn I, Bell P, Groth CG, Blanchard H, Kashiwagi N, Putnam CW (1969) Orthotopic liver transplantation in man. Transplant Proc 1(1):216–222

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Phillips RA, Cowan DH (1972) Human bone marrow transplantation. Med Clin North Am 56(2):433–451

    Article  CAS  PubMed  Google Scholar 

  7. Dausset J, Nenna A (1952) Presence of leuko-agglutinin in the serum of a case of chronic agranulocytosis. C R Seances Soc Biol Fil 146(19–20):1539–1541

    PubMed  CAS  Google Scholar 

  8. Dyer PA, Claas FH (1997) A future for HLA matching in clinical transplantation. European journal of immunogenetics: official journal of the British society for histocompatibility and. Immunogenetics 24(1):17–28

    Article  CAS  Google Scholar 

  9. Erlich H (2012) HLA DNA typing: past, present, and future. Tissue Antigens 80(1):1–11. https://doi.org/10.1111/j.1399-0039.2012.01881.x

    Article  PubMed  CAS  Google Scholar 

  10. Cereb N, Kim HR, Ryu J, Yang SY (2015) Advances in DNA sequencing technologies for high resolution HLA typing. Hum Immunol 76(12):923–927. https://doi.org/10.1016/j.humimm.2015.09.015

    Article  PubMed  CAS  Google Scholar 

  11. Olerup O, Zetterquist H (1992) HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 39:225–235. https://doi.org/10.1111/j.1399-0039.1992.tb01940.x

    Article  PubMed  CAS  Google Scholar 

  12. Speiser DE, Tiercy JM, Rufer N, Grundschober C, Gratwohl A, Chapuis B, Helg C, Loliger CC, Siren MK, Roosnek E, Jeannet M (1996) High resolution HLA matching associated with decreased mortality after unrelated bone marrow transplantation. Blood 87(10):4455–4462

    PubMed  CAS  Google Scholar 

  13. Middleton D (1999) History of DNA typing for the human MHC. Rev Immunogenet 1(2):135–156

    PubMed  CAS  Google Scholar 

  14. Lawlor DA, Zemmour J, Ennis PD, Parham P (1990) Evolution of class-I MHC genes and proteins: from natural selection to thymic selection. Annu Rev Immunol 8:23–63. https://doi.org/10.1146/annurev.iy.08.040190.000323

    Article  PubMed  CAS  Google Scholar 

  15. Boegel S, Lower M, Schafer M, Bukur T, de Graaf J, Boisguerin V, Tureci O, Diken M, Castle JC, Sahin U (2012) HLA typing from RNA-Seq sequence reads. Genome Med 4(12):102. https://doi.org/10.1186/gm403

    Article  PubMed  PubMed Central  Google Scholar 

  16. Buchkovich ML, Brown CC, Robasky K, Chai S, Westfall S, Vincent BG, Weimer ET, Powers JG (2017) HLAProfiler utilizes k-mer profiles to improve HLA calling accuracy for rare and common alleles in RNA-seq data. Genome Med 9(1):86. https://doi.org/10.1186/s13073-017-0473-6

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fernandez-Vina MA, Klein JP, Haagenson M, Spellman SR, Anasetti C, Noreen H, Baxter-Lowe LA, Cano P, Flomenberg N, Confer DL, Horowitz MM, Oudshoorn M, Petersdorf EW, Setterholm M, Champlin R, Lee SJ, de Lima M (2013) Multiple mismatches at the low expression HLA loci DP, DQ, and DRB3/4/5 associate with adverse outcomes in hematopoietic stem cell transplantation. Blood 121(22):4603–4610. https://doi.org/10.1182/blood-2013-02-481945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Greene JM, Wiseman RW, Lank SM, Bimber BN, Karl JA, Burwitz BJ, Lhost JJ, Hawkins OE, Kunstman KJ, Broman KW, Wolinsky SM, Hildebrand WH, O'Connor DH (2011) Differential MHC class I expression in distinct leukocyte subsets. BMC Immunol 12:39. https://doi.org/10.1186/1471-2172-12-39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kaur G, Gras S, Mobbs JI, Vivian JP, Cortes A, Barber T, Kuttikkatte SB, Jensen LT, Attfield KE, Dendrou CA, Carrington M, McVean G, Purcell AW, Rossjohn J, Fugger L (2017) Structural and regulatory diversity shape HLA-C protein expression levels. Nat Commun 8:15924. https://doi.org/10.1038/ncomms15924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kulkarni S, Savan R, Qi Y, Gao X, Yuki Y, Bass SE, Martin MP, Hunt P, Deeks SG, Telenti A, Pereyra F, Goldstein D, Wolinsky S, Walker B, Young HA, Carrington M (2011) Differential microRNA regulation of HLA-C expression and its association with HIV control. Nature 472(7344):495–498. https://doi.org/10.1038/nature09914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Petersdorf EW, Malkki M, O'HUigin C, Carrington M, Gooley T, Haagenson MD, Horowitz MM, Spellman SR, Wang T, Stevenson P (2015) High HLA-DP expression and graft-versus-host disease. N Engl J Med 373(7):599–609. https://doi.org/10.1056/NEJMoa1500140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Rene C, Lozano C, Eliaou JF (2016) Expression of classical HLA class I molecules: regulation and clinical impacts: Julia Bodmer award review 2015. HLA 87(5):338–349. https://doi.org/10.1111/tan.12787

    Article  PubMed  CAS  Google Scholar 

  23. Schone B, Bergmann S, Lang K, Wagner I, Schmidt AH, Petersdorf EW, Lange V (2018) Predicting an HLA-DPB1 expression marker based on standard DPB1 genotyping: linkage analysis of over 32,000 samples. Hum Immunol 79(1):20–27. https://doi.org/10.1016/j.humimm.2017.11.001

    Article  PubMed  CAS  Google Scholar 

  24. Seliger B (2017) Immune modulatory microRNAs as a novel mechanism to revert immune escape of tumors. Cytokine Growth Factor Rev 36:49–56. https://doi.org/10.1016/j.cytogfr.2017.07.001

    Article  PubMed  CAS  Google Scholar 

  25. Sellares J, Reeve J, Loupy A, Mengel M, Sis B, Skene A, de Freitas DG, Kreepala C, Hidalgo LG, Famulski KS, Halloran PF (2013) Molecular diagnosis of antibody-mediated rejection in human kidney transplants. Am J Transplant 13(4):971–983. https://doi.org/10.1111/ajt.12150

    Article  PubMed  CAS  Google Scholar 

  26. Cecka JM, Reed EF, Zachary AA (2015) HLA high-resolution typing for sensitized patients: a solution in search of a problem? Am J Transplant 15(4):855–856. https://doi.org/10.1111/ajt.13169

    Article  PubMed  CAS  Google Scholar 

  27. Montgomery RA, Leffell MS, Zachary AA (2013) Transplantation of the sensitized patient: histocompatibility testing. Methods Mol Biol 1034:117–125. https://doi.org/10.1007/978-1-62703-493-7_6

    Article  PubMed  CAS  Google Scholar 

  28. Zachary AA, Leffell MS (2016) HLA mismatching strategies for solid organ transplantation - a balancing act. Front Immunol 7:575. https://doi.org/10.3389/fimmu.2016.00575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kamoun M, Phelan D, Noreen H, Marcus N, Klingman L, Gebel HM (2017) HLA compatibility assessment and management of highly sensitized patients under the new kidney allocation system (KAS): a 2016 status report from twelve HLA laboratories across the U.S. Hum Immunol 78(1):19–23. https://doi.org/10.1016/j.humimm.2016.10.023

    Article  PubMed  CAS  Google Scholar 

  30. Smith JM, Biggins SW, Haselby DG, Kim WR, Wedd J, Lamb K, Thompson B, Segev DL, Gustafson S, Kandaswamy R, Stock PG, Matas AJ, Samana CJ, Sleeman EF, Stewart D, Harper A, Edwards E, Snyder JJ, Kasiske BL, Israni AK (2012) Kidney, pancreas and liver allocation and distribution in the United States. Am J Transplant 12(12):3191–3212. https://doi.org/10.1111/j.1600-6143.2012.04259.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Stewart DE, Garcia VC, Aeder MI, Klassen DK (2017) New insights into the alleged kidney donor profile index labeling effect on kidney utilization. Am J Transplant 17(10):2696–2704. https://doi.org/10.1111/ajt.14379

    Article  PubMed  CAS  Google Scholar 

  32. Stewart DE, Klassen DK (2016) Kidney transplants from HLA-incompatible live donors and survival. N Engl J Med 375(3):287–288. https://doi.org/10.1056/NEJMc1604523#SA2

    Article  PubMed  Google Scholar 

  33. Stewart DE, Klassen DK (2017) Early experience with the new kidney allocation system: a perspective from UNOS. Clin J Am Soc Nephrol 12(12):2063–2065. https://doi.org/10.2215/cjn.06380617

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stewart DE, Kucheryavaya AY, Klassen DK, Turgeon NA, Formica RN, Aeder MI (2016) Changes in deceased donor kidney transplantation one year after KAS implementation. Am J Transplant 16(6):1834–1847. https://doi.org/10.1111/ajt.13770

    Article  PubMed  CAS  Google Scholar 

  35. Grgic I, Chandraker A (2017) Significance of biologics in renal transplantation: past, present, and future. Curr Opin Organ Transplant 23(1):51–62. https://doi.org/10.1097/mot.0000000000000496

    Article  Google Scholar 

  36. Williams RC, Opelz G, McGarvey CJ, Weil EJ, Chakkera HA (2016) The risk of transplant failure with HLA mismatch in first adult kidney allografts from deceased donors. Transplantation 100(5):1094–1102. https://doi.org/10.1097/TP.0000000000001115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Tinckam KJ, Liwski R, Pochinco D, Mousseau M, Grattan A, Nickerson P, Campbell P (2015) cPRA increases with DQA, DPA, and DPB unacceptable antigens in the Canadian cPRA calculator. Am J Transplant 15(12):3194–3201. https://doi.org/10.1111/ajt.13355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Tinckam KJ, Rose C, Hariharan S, Gill J (2016) Re-examining risk of repeated HLA mismatch in kidney transplantation. J Am Soc Nephrol 27(9):2833–2841. https://doi.org/10.1681/ASN.2015060626

    Article  PubMed  PubMed Central  Google Scholar 

  39. Roberts JP, Wolfe RA, Bragg-Gresham JL, Rush SH, Wynn JJ, Distant DA, Ashby VB, Held PJ, Port FK (2004) Effect of changing the priority for HLA matching on the rates and outcomes of kidney transplantation in minority groups. N Engl J Med 350(6):545–551. https://doi.org/10.1056/NEJMoa025056

    Article  PubMed  CAS  Google Scholar 

  40. Tinckam KJ (2012) Basic histocompatibility testing methods. pp 21–42. doi:https://doi.org/10.1007/978-1-4614-0008-0_2

    Chapter  Google Scholar 

  41. Eng HS, Leffell MS (2011) Histocompatibility testing after fifty years of transplantation. J Immunol Methods 369(1–2):1–21. https://doi.org/10.1016/j.jim.2011.04.005

    Article  PubMed  CAS  Google Scholar 

  42. Crivello P, Zito L, Sizzano F, Zino E, Maiers M, Mulder A, Toffalori C, Naldini L, Ciceri F, Vago L, Fleischhauer K (2015) The impact of amino acid variability on alloreactivity defines a functional distance predictive of permissive HLA-DPB1 mismatches in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 21(2):233–241. https://doi.org/10.1016/j.bbmt.2014.10.017

    Article  PubMed  CAS  Google Scholar 

  43. Pidala J, Wang T, Haagenson M, Spellman SR, Askar M, Battiwalla M, Baxter-Lowe LA, Bitan M, Fernandez-Vina M, Gandhi M, Jakubowski AA, Maiers M, Marino SR, Marsh SG, Oudshoorn M, Palmer J, Prasad VK, Reddy V, Ringden O, Saber W, Santarone S, Schultz KR, Setterholm M, Trachtenberg E, Turner EV, Woolfrey AE, Lee SJ, Anasetti C (2013) Amino acid substitution at peptide-binding pockets of HLA class I molecules increases risk of severe acute GVHD and mortality. Blood 122(22):3651–3658. https://doi.org/10.1182/blood-2013-05-501510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zino E, Frumento G, Marktel S, Sormani MP, Ficara F, Di Terlizzi S, Parodi AM, Sergeant R, Martinetti M, Bontadini A, Bonifazi F, Lisini D, Mazzi B, Rossini S, Servida P, Ciceri F, Bonini C, Lanino E, Bandini G, Locatelli F, Apperley J, Bacigalupo A, Ferrara GB, Bordignon C, Fleischhauer K (2004) A T-cell epitope encoded by a subset of HLA-DPB1 alleles determines nonpermissive mismatches for hematologic stem cell transplantation. Blood 103(4):1417–1424. https://doi.org/10.1182/blood-2003-04-1279

    Article  PubMed  CAS  Google Scholar 

  45. Zino E, Vago L, Di Terlizzi S, Mazzi B, Zito L, Sironi E, Rossini S, Bonini C, Ciceri F, Roncarolo MG, Bordignon C, Fleischhauer K (2007) Frequency and targeted detection of HLA-DPB1 T cell epitope disparities relevant in unrelated hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 13(9):1031–1040. https://doi.org/10.1016/j.bbmt.2007.05.010

    Article  PubMed  CAS  Google Scholar 

  46. Gragert L, Eapen M, Williams E, Freeman J, Spellman S, Baitty R, Hartzman R, Rizzo JD, Horowitz M, Confer D, Maiers M (2014) HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med 371(4):339–348. https://doi.org/10.1056/NEJMsa1311707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Tie R, Zhang T, Yang B, Fu H, Han B, Yu J, Tan Y, Huang H (2017) Clinical implications of HLA locus mismatching in unrelated donor hematopoietic cell transplantation: a meta-analysis. Oncotarget 8(16):27645–27660. https://doi.org/10.18632/oncotarget.15291

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lee SJ, Klein J, Haagenson M, Baxter-Lowe LA, Confer DL, Eapen M, Fernandez-Vina M, Flomenberg N, Horowitz M, Hurley CK, Noreen H, Oudshoorn M, Petersdorf E, Setterholm M, Spellman S, Weisdorf D, Williams TM, Anasetti C (2007) High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood 110(13):4576–4583. https://doi.org/10.1182/blood-2007-06-097386

    Article  CAS  PubMed  Google Scholar 

  49. Touzeau C, Gagne K, Sebille V, Herry P, Chevallier P, Follea G, Devys A, Moreau P, Mohty M, Cesbron Gautier A (2012) Investigation of the impact of HLA-DPB1 matching status in 10/10 HLA matched unrelated hematopoietic stem cell transplantation: results of a French single center study. Hum Immunol 73(7):711–714. https://doi.org/10.1016/j.humimm.2012.03.013

    Article  PubMed  CAS  Google Scholar 

  50. Crocchiolo R, Zino E, Vago L, Oneto R, Bruno B, Pollichieni S, Sacchi N, Sormani MP, Marcon J, Lamparelli T, Fanin R, Garbarino L, Miotti V, Bandini G, Bosi A, Ciceri F, Bacigalupo A, Fleischhauer K (2009) Nonpermissive HLA-DPB1 disparity is a significant independent risk factor for mortality after unrelated hematopoietic stem cell transplantation. Blood 114(7):1437–1444. https://doi.org/10.1182/blood-2009-01-200378

    Article  PubMed  CAS  Google Scholar 

  51. Weimer ET (2016) Clinical validation of NGS technology for HLA: an early adopter's perspective. Hum Immunol 77(10):820–823. https://doi.org/10.1016/j.humimm.2016.06.014

    Article  PubMed  CAS  Google Scholar 

  52. Weimer ET, Montgomery M, Petraroia R, Crawford J, Schmitz JL (2016) Performance characteristics and validation of next-generation sequencing for human leucocyte antigen typing. J Mol Diagn 18(5):668–675. https://doi.org/10.1016/j.jmoldx.2016.03.009

    Article  PubMed  CAS  Google Scholar 

  53. Lange V, Bohme I, Hofmann J, Lang K, Sauter J, Schone B, Paul P, Albrecht V, Andreas JM, Baier DM, Nething J, Ehninger U, Schwarzelt C, Pingel J, Ehninger G, Schmidt AH (2014) Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing. BMC Genomics 15:63. https://doi.org/10.1186/1471-2164-15-63

    Article  PubMed  PubMed Central  Google Scholar 

  54. Duke JL, Lind C, Mackiewicz K, Ferriola D, Papazoglou A, Gasiewski A, Heron S, Huynh A, McLaughlin L, Rogers M, Slavich L, Walker R, Monos DS (2016) Determining performance characteristics of an NGS-based HLA typing method for clinical applications. HLA 87(3):141–152. https://doi.org/10.1111/tan.12736

    Article  CAS  PubMed  Google Scholar 

  55. Lind C, Ferriola D, Mackiewicz K, Heron S, Rogers M, Slavich L, Walker R, Hsiao T, McLaughlin L, D'Arcy M, Gai X, Goodridge D, Sayer D, Monos D (2010) Next-generation sequencing: the solution for high-resolution, unambiguous human leukocyte antigen typing. Hum Immunol 71(10):1033–1042. https://doi.org/10.1016/j.humimm.2010.06.016

    Article  PubMed  CAS  Google Scholar 

  56. Profaizer T, Lazar-Molnar E, Pole A, Delgado JC, Kumanovics A (2017) HLA genotyping using the Illumina HLA TruSight next-generation sequencing kits: a comparison. Int J Immunogenet 44(4):164–168. https://doi.org/10.1111/iji.12322

    Article  PubMed  CAS  Google Scholar 

  57. Boza V, Brejova B, Vinar T (2017) DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads. PLoS One 12(6):e0178751. https://doi.org/10.1371/journal.pone.0178751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Laver TW, Caswell RC, Moore KA, Poschmann J, Johnson MB, Owens MM, Ellard S, Paszkiewicz KH, Weedon MN (2016) Pitfalls of haplotype phasing from amplicon-based long-read sequencing. Sci Rep 6:21746. https://doi.org/10.1038/srep21746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Ammar R, Paton TA, Torti D, Shlien A, Bader GD (2015) Long read nanopore sequencing for detection of HLA and CYP2D6 variants and haplotypes. F1000Res 4:17. https://doi.org/10.12688/f1000research.6037.1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Albrecht V, Zweiniger C, Surendranath V, Lang K, Schofl G, Dahl A, Winkler S, Lange V, Bohme I, Schmidt AH (2017) Dual redundant sequencing strategy: full-length gene characterisation of 1056 novel and confirmatory HLA alleles. Hla 90(2):79–87. https://doi.org/10.1111/tan.13057

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Chen Q, Luo G, Zhang X (2017) MiR-148a modulates HLA-G expression and influences tumor apoptosis in esophageal squamous cell carcinoma. Exp Ther Med 14(5):4448–4452. https://doi.org/10.3892/etm.2017.5058

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jain M, Fiddes IT, Miga KH, Olsen HE, Paten B, Akeson M (2015) Improved data analysis for the MinION nanopore sequencer. Nat Methods 12(4):351–356. https://doi.org/10.1038/nmeth.3290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Jain M, Olsen HE, Paten B, Akeson M (2016) The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 17(1):239. https://doi.org/10.1186/s13059-016-1103-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Karlsson E, Larkeryd A, Sjodin A, Forsman M, Stenberg P (2015) Scaffolding of a bacterial genome using MinION nanopore sequencing. Sci Rep 5:11996. https://doi.org/10.1038/srep11996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Loose M, Malla S, Stout M (2016) Real-time selective sequencing using nanopore technology. Nat Methods 13(9):751–754. https://doi.org/10.1038/nmeth.3930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Manrao EA, Derrington IM, Laszlo AH, Langford KW, Hopper MK, Gillgren N, Pavlenok M, Niederweis M, Gundlach JH (2012) Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol 30(4):349–353. https://doi.org/10.1038/nbt.2171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Norris AL, Workman RE, Fan Y, Eshleman JR, Timp W (2016) Nanopore sequencing detects structural variants in cancer. Cancer Biol Ther 17(3):246–253. https://doi.org/10.1080/15384047.2016.1139236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Bolisetty MT, Rajadinakaran G, Graveley BR (2015) Determining exon connectivity in complex mRNAs by nanopore sequencing. Genome Biol 16:204. https://doi.org/10.1186/s13059-015-0777-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Branton D, Daniel B, Deamer DW, Andre M, Hagan B, Benner SA (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26(10):1146–1153. https://doi.org/10.1038/nbt.1495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Wei S, Williams Z (2016) Rapid short-read sequencing and aneuploidy detection using MinION Nanopore technology. Genetics 202(1):37–44. https://doi.org/10.1534/genetics.115.182311

    Article  PubMed  CAS  Google Scholar 

  71. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4(4):265–270. https://doi.org/10.1038/nnano.2009.12

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric T. Weimer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Edgerly, C.H., Weimer, E.T. (2018). The Past, Present, and Future of HLA Typing in Transplantation. In: Boegel, S. (eds) HLA Typing. Methods in Molecular Biology, vol 1802. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8546-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8546-3_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8545-6

  • Online ISBN: 978-1-4939-8546-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics