Skip to main content

Rapid Mapping of Protein Binding Sites and Conformational Epitopes by Coupling Yeast Surface Display to Chemical Labeling and Deep Sequencing

  • Protocol
  • First Online:
Epitope Mapping Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1785))

Abstract

Delineating the precise regions on an antigen that are targeted by antibodies is important for the development of vaccines and antibody therapeutics. X-ray crystallography and NMR are considered the gold standard for providing precise information about these binding sites at atomic resolution. However, these are labor-intensive and require purified protein at high concentration. We have recently described [1] a rapid and reliable method that overcomes these constraints, using a panel of single cysteine mutants of the protein of interest and now provide protocols to facilitate its adoption. Mutants are displayed on the yeast cell surface either individually or as a pool, and labeled covalently with a cysteine specific probe. Binding site residues are inferred by monitoring loss of ligand or antibody binding by flow cytometry coupled to deep sequencing of sorted populations, or Sanger sequencing of individual clones. Buried cysteine residues are not labeled and library sizes are small, facilitating rapid identification of binding-site residues. The methodology was used to identify epitopes on the bacterial toxin CcdB targeted by twenty-four different monoclonal antibodies as well as by polyclonal sera. The method does not require purified protein or protein structural information and can be applied to a variety of display formats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Najar TA, Khare S, Pandey R, Gupta SK, Varadarajan R (2017) Mapping protein binding sites and conformational epitopes using cysteine labeling and yeast surface display. Structure 25(3):395–406. https://doi.org/10.1016/j.str.2016.12.016

    Article  CAS  PubMed  Google Scholar 

  2. Jerne NK (1960) Immunological speculations. Annu Rev Microbiol 14:341–358. https://doi.org/10.1146/annurev.mi.14.100160.002013

    Article  CAS  PubMed  Google Scholar 

  3. Haste Andersen P, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein science : a publication of the Protein Society 15(11):2558–2567. https://doi.org/10.1110/ps.062405906

    Article  CAS  Google Scholar 

  4. Geysen HM, Meloen RH, Barteling SJ (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci U S A 81(13):3998–4002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van Zonneveld AJ, van den Berg BM, van Meijer M, Pannekoek H (1995) Identification of functional interaction sites on proteins using bacteriophage-displayed random epitope libraries. Gene 167(1–2):49–52

    Article  PubMed  Google Scholar 

  6. Petersen G, Song D, Hugle-Dorr B, Oldenburg I, Bautz EK (1995) Mapping of linear epitopes recognized by monoclonal antibodies with gene-fragment phage display libraries. Molecular & general genetics : MGG 249(4):425–431

    Article  CAS  PubMed  Google Scholar 

  7. Christmann A, Wentzel A, Meyer C, Meyers G, Kolmar H (2001) Epitope mapping and affinity purification of monospecific antibodies by Escherichia coli cell surface display of gene-derived random peptide libraries. J Immunol Methods 257(1–2):163–173

    Article  CAS  PubMed  Google Scholar 

  8. Rockberg J, Lofblom J, Hjelm B, Uhlen M, Stahl S (2008) Epitope mapping of antibodies using bacterial surface display. Nat Methods 5(12):1039–1045. https://doi.org/10.1038/nmeth.1272

    Article  CAS  PubMed  Google Scholar 

  9. Volk AL, Hu FJ, Rockberg J (2014) Epitope mapping of monoclonal and polyclonal antibodies using bacterial cell surface display. Methods Mol Biol 1131:485–500. https://doi.org/10.1007/978-1-62703-992-5_29

    Article  CAS  PubMed  Google Scholar 

  10. Hudson EP, Uhlen M, Rockberg J (2012) Multiplex epitope mapping using bacterial surface display reveals both linear and conformational epitopes. Sci Rep 2:706. https://doi.org/10.1038/srep00706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chao G, Cochran JR, Wittrup KD (2004) Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. J Mol Biol 342(2):539–550. https://doi.org/10.1016/j.jmb.2004.07.053

    Article  CAS  PubMed  Google Scholar 

  12. Levy R, Forsyth CM, LaPorte SL, Geren IN, Smith LA, Marks JD (2007) Fine and domain-level epitope mapping of botulinum neurotoxin type a neutralizing antibodies by yeast surface display. J Mol Biol 365(1):196–210. https://doi.org/10.1016/j.jmb.2006.09.084

    Article  CAS  PubMed  Google Scholar 

  13. Mata-Fink J, Kriegsman B, Yu HX, Zhu H, Hanson MC, Irvine DJ, Wittrup KD (2013) Rapid conformational epitope mapping of anti-gp120 antibodies with a designed mutant panel displayed on yeast. J Mol Biol 425(2):444–456. https://doi.org/10.1016/j.jmb.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  14. Amit AG, Mariuzza RA, Phillips SE, Poljak RJ (1986) Three-dimensional structure of an antigen-antibody complex at 2.8 a resolution. Science 233(4765):747–753

    Article  CAS  PubMed  Google Scholar 

  15. Rosen O, Anglister J (2009) Epitope mapping of antibody-antigen complexes by nuclear magnetic resonance spectroscopy. Methods Mol Biol 524:37–57. https://doi.org/10.1007/978-1-59745-450-6_3

    Article  CAS  PubMed  Google Scholar 

  16. Zvi A, Kustanovich I, Feigelson D, Levy R, Eisenstein M, Matsushita S, Richalet-Secordel P, Regenmortel MH, Anglister J (1995) NMR mapping of the antigenic determinant recognized by an anti-gp120, human immunodeficiency virus neutralizing antibody. European J Biochem/FEBS 229(1):178–187

    Article  CAS  Google Scholar 

  17. Cunningham BC, Wells JA (1989) High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244(4908):1081–1085

    Article  CAS  PubMed  Google Scholar 

  18. Pandit D, Tuske SJ, Coales SJ, SY E, Liu A, Lee JE, Morrow JA, Nemeth JF, Hamuro Y (2012) Mapping of discontinuous conformational epitopes by amide hydrogen/deuterium exchange mass spectrometry and computational docking. J Mol Recognition: JMR 25(3):114–124. https://doi.org/10.1002/jmr.1169

    Article  CAS  Google Scholar 

  19. Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1(2):755–768. https://doi.org/10.1038/nprot.2006.94

    Article  CAS  PubMed  Google Scholar 

  20. Jain PC, Varadarajan R (2014) A rapid, efficient, and economical inverse polymerase chain reaction-based method for generating a site saturation mutant library. Anal Biochem 449:90–98. https://doi.org/10.1016/j.ab.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  21. Hubbard S (1992) NACCESS: program for calculating accessibilities

    Google Scholar 

  22. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31–34. https://doi.org/10.1038/nprot.2007.13

    Article  CAS  PubMed  Google Scholar 

  23. Lo Conte L, Chothia C, Janin J (1999) The atomic structure of protein-protein recognition sites. J Mol Biol 285(5):2177–2198

    Article  CAS  PubMed  Google Scholar 

  24. Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55(3):379–400

    Article  CAS  PubMed  Google Scholar 

  25. Chakravarty S, Varadarajan R (1999) Residue depth: a novel parameter for the analysis of protein structure and stability. Structure 7(7):723–732

    Article  CAS  PubMed  Google Scholar 

  26. Tan KP, Varadarajan R, Madhusudhan MS (2011) DEPTH: a web server to compute depth and predict small-molecule binding cavities in proteins. Nucleic Acids Res 39(Web Server issue):W242–W248. https://doi.org/10.1093/nar/gkr356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bowley DR, Labrijn AF, Zwick MB, Burton DR (2007) Antigen selection from an HIV-1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage. Protein Eng Des Sel: PEDS 20(2):81–90. https://doi.org/10.1093/protein/gzl057

    Article  CAS  PubMed  Google Scholar 

  28. Sahoo A, Khare S, Devanarayanan S, Jain PC, Varadarajan R (2015) Residue proximity information and protein model discrimination using saturation-suppressor mutagenesis. Elife 4:e09532. https://doi.org/10.7554/eLife.09532

    Article  PubMed  PubMed Central  Google Scholar 

  29. Carver T, Bleasby A (2003) The design of Jemboss: a graphical user interface to EMBOSS. Bioinformatics 19(14):1837–1843

    Article  CAS  PubMed  Google Scholar 

  30. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16(6):276–277

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support for this study was provided by the Department of Biotechnology (DBT) and Department of Science and Technology (DST), Government of India grants BT/COE/34/SP15219/2015 and SB/SO/BB-0099/2013, respectively, to R.V. We thank Sivasankar Devanarayanan for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavan Varadarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Najar, T.A., Khare, S., Varadarajan, R. (2018). Rapid Mapping of Protein Binding Sites and Conformational Epitopes by Coupling Yeast Surface Display to Chemical Labeling and Deep Sequencing. In: Rockberg, J., Nilvebrant, J. (eds) Epitope Mapping Protocols. Methods in Molecular Biology, vol 1785. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7841-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7841-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7839-7

  • Online ISBN: 978-1-4939-7841-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics